
Morse theory and persistent 
homology for topological analysis 

of 3D images of complex materials  

Olaf Delgado-Friedrichs,, Vanessa Robins and Adrian Sheppard 

Department of Applied Mathematics, Research School of Physics and 
Engineering, Australian National University, Canberra, Australia 
 



Outline 
1.  Introduction to skeletons and watersheds 
2.  Morse theory: topo-geometric structure of a scalar 

function f(x)  
3.  constructing the discrete Morse complex from 2D/3D 

grayscale images 
4.  Defining skeletons and consistent partitions from the 

Morse complex 
5.  Using persistence homology for simplification and 

analysis 
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ANU micro-CT facility 

•  In continual development since 2000  
•  Sources and detectors “off the shelf” (Hamamatsu, Varian, Perkin 

Elmer et al.) 
•  resolution down to 2 microns, submicron system under construction 
•  routine image sizes 3000x3000x10000 voxels (180 GB)  
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Porous materials 
Fluid distribution Bone regrowth 



An object 



Distance transform 



Australian art! 



Skeleton (medial line) 



Watershed partition 



Morse theory and level cuts 
The topological-geometric  structure of 
a scalar function f is given by the lower 
level cuts  
 
 
If we scan h from the lowest to highest 
image values, changes in the topology 
of L(h) only occur when passing a 
critical value of f.  
 
A Morse function has non-degenerate 
critical points whose index is the 
number of negative eigenvalues of the 
Hessian (matrix of second derivatives).  
 
 

min: index 0  
saddle: index 1  
max: index 2  

Lf (h) = {x | f (x)  h}



The Morse complex 
for Morse functions, in continuous space 

An index-i critical point becomes 
an i-cell.   

Gradient flow lines determine 
adjacencies and the boundary 
operator.  

This (abstract) chain complex 
has the same homology as the 
simplicial, singular or cellular 
homology of M.   

min: 0-cell  
saddle: 1-cell  
max: 2-cell  

A gradient flow-line passes 
through every point; each flow-
line originates and terminates 
at a critical point. 
 
The unstable manifold of a 
critical point p is the union of all 
flow-lines that originate at p.  
 
The unstable manifold of an  
index-i critical point forms an i-
dimensional cell of the Morse 
complex. 



Morse theory on digital images 

The goal: define all lower level cuts 
and capture where their topology 
changes 

Model a digital image as a cell 
complex of points, lines, squares 
and cubes. 

Construct a complex to represent 
each lower level cut by adding cells 
in grayscale order.  Where possible, 
add cells in face-coface pairs, as 
simple homotopy expansions.  

Unpaired cells (critical cells) are 
added only when necessary. 
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Robins, Wood, Sheppard, IEEE TPAMI (2011) 



Forman’s discrete Morse theory 
The incremental algorithm we’ve 
described allows one to construct a 
discrete gradient vector field and a 
discrete Morse function following 
Forman’s definitions. 

This gives V-paths, the discrete 
analogue of gradient flow lines. 

V-paths between critical cells define 
the Morse chain complex. 

 

Forman  1998 
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Each cell in the chain complex represents the 
unstable set of a critical cell x in the image: all 
cells that lie on V-paths originating at x. 



Constructing the discrete Morse complex 

The incremental algorithm provides the local detail, i.e. it finds the critical 
points and vector field pairings.   
Discrete Morse theory provides the global picture, i.e the flow lines and a 
combinatorial cell complex that’s ideal for further computation.   

Robins Wood Sheppard IEEE TPAMI (2011).  

grayscale digital image 
(signed distance transform) 

critical points cell complex 



Morse complex of a sphere pack 
Calculated from the signed Euclidean distance transform 
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Skeletonisation and partitioning 

As in the continuous case: 
 
V-paths (flow lines) between 
critical points are related to 
skeletons and watershed 
partitions. 
 
And Morse theory provides a 
built-in simplification technique 
for “noise” removal. 

 



The Morse skeleton 
The Morse skeleton A(c) for 
the lower level set at value c 
is the union of unstable 
complexes of critical points x 
with f(x) ≤ c.  

Theorem:  A(c) is homotopic 
to the lower level cut at c by a 
regular collapse.  

Critical 1-cells generate linear 
elements in the skeleton;  and 
critical 2-cells generate sheet-
like elements.  

  



Skeleton 
computed 
from void space 
of sphere pack.  
 
2D patches 
mean a 1D 
skeleton would 
be inaccurate. 
 
 
 
Image produced  
using web-based 
renderer, 
Voluminous.  



Partitioning via Morse basins 

Each vertex is in the stable set of 
exactly one minimum (critical 0-cell) 
α.   
 
The basin of a minimum, B(α), is 
the maximal subcomplex that has a 
regular collapse onto α. 	


	


Morse basins are analogous to 
watershed basins and can be 
shown to be simply connected. 
 



Skeleton and  pore 
partition from SEDT on 
2D slice of limestone.  

 

Solid phase shown in 
grey levels; 

Void space is divided into 
coloured pores 

 

White lines are the 
Morse Skeleton 

Blue lines are 
watersheds 



There is no saddle point 
(critical bridge) between A and 
C; they are unconnected in the 
dual of the Morse complex. 
A and C are connected through 
a canonical path. 

Complexities 

black points: minima 
blue points: saddles  
grey points: maxima  
thick blue lines: basin boundaries 
thin blue lines: non-skeleton 1-cells 
white lines: skeleton 
coloured regions: partition of Lf(0)  
background shading:  Lighter 
means lower image values 



Limestone 2D Morse complex white points: minima  
black points: maxima 
grey lines: partition boundaries 
coloured lines: skeleton 
background shading:  Lighter 
means lower image values 



Persistent homology and close pair simplification 
•  Each topological feature of dimension i is “born” with the insertion of 

an i-cell and “dies” with the insertion of an i+1 cell.   

•  This allows us to define the persistence of topological features in 
terms of their lifetime.  

•  low persistence features exist for only a small range of cut values 

•  On the Morse chain complex filtration, reordering critical points allows 
the effective removal of low-persistence features  

 

Image from Zomorodian 2009 



Limestone 2D Morse complex 
pair cancellation to p=1.0 white points: minima  

black points: maxima 
grey lines: partition boundaries 
coloured lines: skeleton 
background shading:  Lighter 
means lower image values 



Summary of implementation  
•  All code is written in C++98  with distributed-memory parallel 

implementations for everything but persistent homology, using MPI 
for inter-process communication. 

•  The parallel code splits the input image into rectilinear blocks, one 
per process, with small overlaps (1 or 2 pixels). 

•  Memory consumption reduced using regularity of cubical complexes 
and linear arrays and binary search.   

•  The Morse chain complex extraction adapts Guenther (2012)  in 
order to avoid retracing the same partial V-paths multiple times. 

•  Persistent homology computation uses a variation of the method by 
Chen and Kerber (2011). 

Olaf Delgado-Friedrichs 



Persistence diagram: Poisson spheres  

Thresholds are from    
Lorenz and Ziff (2001) 
Rintoul (2000) 



Bead packs (solid phase) 

components tunnels voids 



Sand, Volcanic Tuff, Sandstone 

components tunnels voids 



Conclusions 
Discrete Morse theory of 3D grayscale image data gives: 
•  a good definition of critical points for functions on a 3D 

grid  
•  a single framework for watershed basins and medial axis 

skeletons 
•  topologically consistent region merging and simplification 

to remove “insignificant” features 
•  a chain complex for persistent homology computations, 

allowing structure characterisation  

We acknowledge the support of the Australian Research Council 
through projects FT100100470 and DP110102964 



Betti-0 births  measure grain size as radius of max inscribed sphere. 
 
Betti-0 deaths give maximal grain-contact resolution or overlap measure. 
 
Sudden jump in Betti-1 births defines a percolating length scale. 
 
Defined plateau in Betti-1 deaths is complementary percolating length scale. 
 
Number of Betti-1 pairs with b<0, d>0 is genus of grain phase.   
 
Betti-1 pairs with b<0, d<0 signal highly non-convex grains (ie. consolidated) 
 
Symmetry in Betti-1 PD signals balance between pore and grain phases 
 
Betti-2 PD measures geometry of pores.   
 

Some observations… 



Skeleton and 
partition derived 
using simple 
steepest-descent 
pairing from 
ProcessLowerStar 
 
Notice that some 
boundaries 
between 
watershed regions 
follow the grid 
lines too closely.  
 



Skeleton and 
partition derived 
using newer ideas 
for error 
corrections on 
gradient flow.  
 
Notice the much 
better geometric 
fidelity of the 
watershed 
boundaries.   
 
 


