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Abstract

In many modern applications, including analysis of gene expression and text documents, the

data are noisy, high-dimensional, and unordered — with no particular meaning to the given order

of the variables. Yet, successful learning is often possible due to sparsity: the fact that the data are

typically redundant with underlying structures that can be represented by only a few features. In

this paper, we present treelets — a novel construction of multi-scale bases that extends wavelets to

non-smooth signals. The method is fully adaptive, as it returns a hierarchical tree and an orthonor-

mal basis which both reflect the internal structure of the data. Treelets are especially well-suited as

a dimensionality reduction and feature selection tool prior to regression and classification, in situ-

ations where sample sizes are small and the data are sparse with unknown groupings of correlated

or collinear variables. The method is also simple to implement and analyze theoretically. Here we

describe a variety of situations where treelets perform better than principal component analysis as

well as some common variable selection and cluster averaging schemes. We illustrate treelets on

a blocked covariance model and on several data sets (hyperspectral image data, DNA microarray

data, and internet advertisements) with highly complex dependencies between variables.

1 Introduction

For many modern data sets (e.g. DNA microarrays, financial and consumer data, text documents

and internet web pages), the collected data are high-dimensional, noisy, and unordered, with no

particular meaning to the given order of the variables. In this paper, we introduce a new method-

ology for the analysis of such data. We describe the theoretical properties of the method, and

illustrate the proposed algorithm on hyperspectral image data, internet advertisements, and DNA

microarray data. These data sets contain structure in the form of complex groupings of correlated

variables. For example, the internet data include more than a thousand binary variables (various

features of an image) and a couple of thousand observations (an image in an internet page). Some
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of the variables are exactly linearly related, while others are similar in more subtle ways. The DNA

microarray data include the expression levels of several thousand genes but less than 100 samples

(patients). Many sets of genes exhibit similar expression patterns across samples. The task in both

cases is here classification. The results can therefore easily be compared with those of other clas-

sification algorithms. There is, however, a deeper underlying question that motivated our work: Is

there a simple general methodology that, by construction, captures intrinsic localized structures,

and that as a consequence improves inference and prediction of noisy, high-dimensional data when

sample sizes are small? The method should be powerful enough to describe complex structures on

multiple scales for unordered data, yet be simple enough to understand and analyze theoretically.

Below we give some more background to this problem.

The key property that allows successful inference and prediction in high-dimensional settings

is the notion of sparsity. Generally speaking, there are two main notions of sparsity. The first is

sparsity of various quantities related either to the learning problem at hand or to the representation

of the data in the original given variables. Examples include a sparse regression or classification

vector (Tibshirani, 1996), and a sparse structure to the covariance or inverse covariance matrix of

the given variables (Bickel and Levina, 2007). The second notion is sparsity of the data themselves.

Here we are referring to a situation where the data, despite their apparent high dimensionality,

are highly redundant with underlying structures that can be represented by only a few features.

Examples include data where many variables are approximately collinear or highly related, and

data that lie on a non-linear manifold (Belkin and Niyogi, 2005; Coifman et al., 2005)1. While the

two notions of sparsity are different, they are clearly related. In fact, a low intrinsic dimensionality

of the data typically implies, for example, sparse regression or classification vectors as well as low-

rank covariance matrices. However, this relation may not be directly transparent, as the sparsity of

these quantities sometimes becomes evident only in a different basis representation of the data.

1A referee pointed out that another issue with sparsity is that very high-dimensional spaces have very simple
structure (Hall et al., 2005; Murtagh, 2004; Ahn and Marron, 2004).
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In either case, to take advantage of sparsity, one constrains the set of possible parameters

of the problem. For the first kind of sparsity, two key tools are graphical models (Whittaker,

2001) that assume statistical dependence between specific variables, and regularization methods

that penalize non-sparse solutions (Hastie et al., 2001). Examples of such regularization methods

are the lasso (Tibshirani, 1996), regularized covariance estimation methods (Bickel and Levina,

2007; Levina and Zhu, 2007), and variable selection in high-dimensional graphs (Meinshausen

and Bühlmann, 2006). For the second type of sparsity, where the goal is to find a new set of

coordinates or features of the data, two standard “variable transformation” methods are principal

component analysis (Jolliffe, 2002) and wavelets (Ogden, 1997). Each of these two methods has

its own strengths and weaknesses which we briefly discuss here.

PCA has gained much popularity due to its simplicity and the unique property of providing a

sequence of best linear approximations in a least squares sense. The method has two main limita-

tions. First, PCA computes a global representation, where each basis vector is a linear combination

of all the original variables. This makes it difficult to interpret the results and detect internal local-

ized structures in the data. For example, in gene expression data, it may be difficult to detect small

subsets of highly correlated genes. The second limitation is that PCA constructs an optimal linear

representation of the noisy observations, but not necessarily of the (unknown) underlying noiseless

data. When the number of variables p is much larger than the number of observations n, the true

underlying principal factors may be masked by the noise, yielding an inconsistent estimator in the

joint limit p, n → ∞, p/n → c (Johnstone and Lu, 2004). Even for a finite sample size n, this

property of PCA and other global methods (such as partial least squares and ridge regression) can

lead to large prediction errors in regression and classification (Buckheit and Donoho, 1995; Nadler

and Coifman, 2005b). Eq. 25 in our paper, for example, gives an estimate of the finite-n regression

error for a linear mixture error-in-variables model.

In contrast to PCA, wavelet methods describe the data in terms of localized basis functions. The

representations are multi-scale, and for smooth data, also sparse (Donoho and Johnstone, 1995).
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Wavelets are used in many non-parametric statistics tasks, including regression and density esti-

mation. In recent years, wavelet expansions have also been combined with regularization methods

to find regression vectors which are sparse in an a priori known wavelet basis (Candès and Tao,

2005; Donoho and Elad, 2003). The main limitation of wavelets is the implicit assumption of

smoothness of the (noiseless) data as a function of its variables. In other words, standard wavelets

are not suited for the analysis of unordered data. Thus, some work suggests first sorting the data,

and then applying fixed wavelets to the reordered data (Murtagh et al., 2000; Murtagh, 2007).

In this paper, we propose an adaptive method for multi-scale representation and eigenanalysis

of data where the variables can occur in any given order. We call the construction treelets, as

the method is inspired by both hierarchical clustering trees and wavelets. The motivation for

the treelets is two-fold: One goal is to find a “natural” system of coordinates that reflects the

underlying internal structure of the data and that is robust to noise. A second goal is to improve

the performance of conventional regression and classification techniques in the “large p, small n”

regime by finding a reduced representation of the data prior to learning. We pay special attention

to sparsity in the form of groupings of similar variables. Such low-dimensional structure naturally

occurs in many data sets; e.g. in DNA microarray data where genes sharing the same pathway can

exhibit highly correlated expression patterns, and in the measured spectra of a chemical compound

that is a linear mixture of certain simpler substances. Collinearity of variables is often a problem

for a range of existing dimensionality reduction techniques — including least squares, and variable

selection methods that do not take variable groupings into account.

The implementation of the treelet transform is similar to to the classical Jacobi method from

numerical linear algebra (Golub and van Loan, 1996). In our work, we construct a data-driven

multi-scale basis by applying a series of Jacobi rotations (PCA in two dimensions) to pairs of

correlated variables. The final computed basis functions are orthogonal and supported on nested

clusters in a hierarchical tree. As in standard PCA, we explore the covariance structure of the

data but — unlike PCA — the analysis is local and multi-scale. As shown in Sec. 3.2.2, the treelet
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transform also has faster convergence properties than PCA. It is therefore more suitable as a feature

extraction tool when sample sizes are small.

Other methods also relate to treelets. In recent years, hierarchical clustering methods have been

widely used for identifying diseases and groups of co-expressed genes (Eisen et al., 1998; Tibshi-

rani et al., 1999). Many researchers are also developing algorithms that combine gene selection

and gene grouping; see e.g. Hastie et al. (2001); Dettling and Bühlmann (2004); Zou and Hastie

(2005) among others, and see Fraley and Raftery (2002) for a review of model-based clustering.

The novelty and contribution of our approach is the simultaneous construction of a data-driven

multi-scale orthogonal basis and a hierarchical cluster tree. The introduction of a basis enables

application of the well-developed machinery of orthonormal expansions, wavelets and wavelet

packets for non-parametric smoothing, data compression and analysis of general unordered data.

As with any orthonormal expansion, the expansion coefficients reflect the effective dimension

of the data, as well as the significance of each coordinate. In our case, we even go one step

further: The basis functions themselves contain information on the geometry of the data, while the

corresponding expansion coefficients indicate their importance; see examples in Sec. 4 and Sec. 5.

The treelet algorithm has some similarities to the local Karhunen-Loève Basis for smooth or-

dered data by Coifman and Saito (1996), where the basis functions are data-driven but the tree

structure is fixed. Our paper is also related to recent independent work on the Haar wavelet trans-

form of a dendrogram by Murtagh (2007). The latter paper also suggests basis functions on a

data-driven cluster tree but uses fixed wavelets on a pre-computed dendrogram. The treelet algo-

rithm offers the advantages of both approaches as it incorporates adaptive basis functions as well

as a data-driven tree structure. As shown in this paper, this unifying property turns out to be of

key importance for statistical inference and prediction: The adaptive tree structure allows analysis

of unordered data. The adaptive treelet functions lead to results that reflect the internal localized

structure of the data, and that are stable to noise. In particular, when the data contain subsets of

co-varying variables, the computed basis is sparse, with the dominant basis functions effectively
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serving as indicator functions of the hidden groups. For more complex structure, as illustrated

on real data sets, our method returns “softer”, continuous-valued loading functions. In classifica-

tion problems, the treelet functions with the most discriminant power often compute differences

between groups of variables.

The organization of the paper is as follows: In Sec. 2, we describe the treelet algorithm.

In Sec. 3, we examine its theoretical properties. The analysis includes the general large-sample

properties of treelets, as well as a specific covariance model with block structure. In Sec. 4, we

discuss the performance of the treelet method on a linear mixture error-in-variable model and give

a few illustrative examples of its use in data representation and regression. Finally, in Sec. 5, we

apply our method to classification of hyperspectral data, internet advertisements, and gene expres-

sion arrays.

A preliminary version of this paper was presented at AISTATS-07 (Lee and Nadler, 2007).

2 The Treelet Transform

In many modern data sets the data are not only high-dimensional but also redundant with many

variables related to each other. Hierarchical clustering algorithms (Jain et al., 1999; Xu and Wun-

sch, 2005) are often used for the organization and grouping of the variables of such data sets. These

methods offer an easily interpretable description of the data structure in terms of a dendrogram,

and only require the user to specify a measure of similarity between groups of observations or

variables. So called agglomerative hierarchical methods start at the bottom of the tree and, at each

level, merge the two groups with highest inter-group similarity into one larger cluster. The novelty

of the proposed treelet algorithm is in constructing not only clusters or groupings of variables, but

also functions on the data. More specifically, we construct a multi-scale orthonormal basis on a

hierarchical tree. As in standard multi-resolution analysis (Mallat, 1998), the treelet algorithm

provides a set of “scaling functions” defined on nested subspaces V0 ⊃ V1 ⊃ . . . ⊃ VL, and a set
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of orthogonal “detail functions” defined on residual spaces {W`}L
`=1 where V` ⊕W` = V`−1. The

treelet decomposition scheme represents a multi-resolution transform, but technically speaking,

not a wavelet transform. (In terms of the tiling of “time-frequency” space, the method is more

similar to local cosine transforms, which divide the time axis in intervals of varying sizes.) The

details of the treelet algorithm are in Sec. 2.1.

In this paper, we measure the similarity Mij between two variables si and sj with the correlation

coefficient

ρij =
Σij√
ΣiiΣjj

, (1)

where Σij = E [(si − Esi)(sj − Esj)] is the usual covariance. Other information-theoretic or

graph-theoretic similarity measures are also possible. For some applications, one may want to use

absolute values of correlation coefficients, or a weighted sum of covariances and correlations as in

Mij = |ρij|+ λ|Σij|, where the parameter λ is a non-negative number.

2.1 The Algorithm: Jacobi Rotations on Pairs of Similar Variables

The treelet algorithm is inspired by the classical Jacobi method for computing eigenvalues of a ma-

trix (Golub and van Loan, 1996). There are also some similarities with the Grand Tour (Asimov,

1985), a visualization tool for viewing multidimensional data through a sequence of orthogonal

projections. The main difference from Jacobi’s method — and the reason why the treelet trans-

form, in general, returns an orthonormal basis different from standard PCA — is that treelets are

constructed on a hierarchical tree.

The idea is simple. At each level of the tree, we group together the most similar variables and

replace them by a coarse-grained “sum variable” and a residual “difference variable”. The new

variables are computed by a local PCA (or Jacobi rotation) in two dimensions. Unlike Jacobi’s

original method, difference variables are stored, and only sum variables are processed at higher

levels of the tree. Hence, the multi-resolution analysis (MRA) interpretation. The details of the

algorithm are as follows:
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• At level ` = 0, (the bottom of the tree), each observation or “signal” x is represented by the

original variables x(0) = [s0,1, . . . , s0,p]
T , where s0,k = xk. Associate to these coordinates,

the Dirac basis B0 = [φ0,1, φ0,2, . . . , φ0,p] where B0 is the p × p identity matrix. Compute

the sample covariance and similarity matrices Σ̂(0) and M̂ (0). Initialize the set of “sum

variables”, S = {1, 2, . . . , p}.

• Repeat for ` = 1, . . . , L

1. Find the two most similar sum variables according to the similarity matrix M̂ (`−1).

Let

(α, β) = arg max
i,j∈S

M̂
(`−1)
ij . (2)

where i < j, and maximization is only over pairs of sum variables that belong to the

set S . As in standard wavelet analysis, difference variables (defined in step 3) are not

processed.
2. Perform a local PCA on this pair. Find a Jacobi rotation matrix

J(α, β, θ`) =




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1




(3)

where c = cos (θ`) and s = sin (θ`), that decorrelates xα and xβ; more specifically,

find a rotation angle θ` such that |θ`| ≤ π/4 and Σ̂
(`)
αβ = Σ̂

(`)
βα = 0, where Σ̂(`) =

JT Σ̂(`−1)J . This transformation corresponds to a change of basis B` = JT B`−1, and

new coordinates x(`) = JTx(`−1). Update the similarity matrix M̂ (`) accordingly.

3. Multi-resolution analysis. For ease of notation, assume that Σ̂
(`)
αα ≥ Σ̂

(`)
ββ after the

Jacobi rotation, where the indices α and β correspond to the first and second principal

components, respectively. Define the sum and difference variables at level ` as s` = x
(`)
α

and d` = x
(`)
β . Similarly, define the scaling and detail functions φ` and ψ` as columns
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α and β of the basis matrix B`. Remove the difference variable from the set of sum

variables, S = S \ {β}. At level `, we have the orthonormal treelet decomposition

x =

p−`∑
i=1

s`,iφ`,i +
∑̀
i=1

diψi. (4)

where the new set of scaling vectors {φ`,i}p−`
i=1 is the union of the vector φ` and the

scaling vectors {φ`−1,j}j 6=α,β from the previous level, and the new coarse-grained sum

variables {s`,i}p−`
i=1 are the projections of the original data onto these vectors. As in

standard multi-resolution analysis, the first sum is the coarse-grained representation of

the signal, while the second sum captures the residuals at different scales.

The output of the algorithm can be summarized in terms of a hierarchical tree with a height

L ≤ p− 1 and an ordered set of rotations and pairs of indices, {(θ`, α`, β`)}L
`=1. Fig. 1 (left) shows

an example of a treelet construction for a “signal” of length p = 5, with the data representations

x(`) at the different levels of the tree shown on the right. The s-components (projections in the main

principal directions) represent coarse-grained “sums”. We associate these variables to the nodes in

the cluster tree. Similarly, the d-components (projections in the orthogonal directions) represent

“differences” between node representations at two consecutive levels in the tree. For example, in

the figure, d1ψ1 = (s0,1φ0,1 + s0,2φ0,2)− s1φ1,1 .

We now briefly consider the complexity of the treelet algorithm on a general data set with

n observations and p variables. For a naive implementation with an exhaustive search for the

optimal pair (α, β) in Eq. 2, the overall complexity is m + O(Lp2) operations, where m =

O(min(np2, pn2)) is the cost of computing the sample covariance matrix by singular value de-

composition, and L is the height of the tree. However, by storing the similarity matrices Σ̂(0) and

M̂ (0) and keeping track of their local changes, the complexity can be further reduced to m+O(Lp).

In other words, the computational cost is comparable to hierarchical clustering algorithms.
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s1, d1

s2, d2

s3, d3

s4, d4
x(4) = [ s4 d1 d3 d4 d2 ]T

x(3) = [ s3 d1 d3 s2 d2 ]T

x(2) = [ s1 d1 s0,3 s2 d2 ]T

x(1) = [ s1 d1 s0,3 s0,4 s0,5 ]T

x(0) = [ s0,1 s0,2 s0,3 s0,4 s0,5 ]T

Figure 1: (Left) A toy example of a hierarchical tree for data of dimension p = 5. At ` = 0, the
signal is represented by the original p variables. At each successive level ` = 1, 2, . . . , p−1 the two
most similar sum variables are combined and replaced by the sum and difference variables s`, d`

corresponding to the first and second local principal components. (Right) Signal representation
x(`) at different levels. The s- and d-coordinates represent projections along scaling and detail
functions in a multi-scale treelet decomposition. Each such representation is associated with an
orthogonal basis in Rp that captures the local eigenstructure of the data.

2.2 Selecting the Height L of the Tree and a “Best K-Basis”

The default choice of the treelet transform is a maximum height tree with L = p− 1; see examples

in Sec. 5.1 and Sec. 5.3. This choice leads to a fully parameter-free decomposition of the data and is

also faithful to the idea of a multi-resolution analysis. For more complexity, one can alternatively

also choose any of the orthonormal (ON) bases at levels ` < p − 1 of the tree. The data are

then represented by coarse-grained sum variables for a set of clusters in the tree, and difference

variables that describe the finer details. In principle, any of the standard techniques in hierarchical

clustering can be used in deciding when to stop “merging” clusters (e.g. use a preset threshold

value for the similarity measure, or use hypothesis testing for homogeneity of clusters, etc.). In this

work, we propose a rather different method that is inspired by the best basis paradigm (Coifman

and Wickerhauser, 1992; Saito and Coifman, 1995) in wavelet signal processing. This approach

directly addresses the question of how well one can capture information in the data.

Consider IID data x1, . . . ,xn, where xi ∈ Rp is a p-dimensional random vector. Denote the
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candidate ON bases by B0, . . . , Bp−1, where B` is the basis at level ` in the tree. Suppose now that

we are interested in finding the “best” K-dimensional treelet representation for data representation

and compression, where the dimension K < p has been determined in advance. It then makes

sense to use a scoring criterion that measures the percentage of explained variance for the chosen

coordinates. Thus, we propose the following greedy scoring and selection approach:

For a given orthonormal basis B = (w1, . . . ,wp), assign a normalized energy score E to each

vector wi according to

E(wi) =
E{|wi · x|2}
E{‖x‖2} (5)

The corresponding sample estimate is Ê(w) =
∑n

j=1 |wi·xj |2∑n
j=1 ‖xj‖2 . Sort the vectors according to decreas-

ing energy, w(1), . . . ,w(p), and define the score ΓK of the basis B by summing the K largest terms,

i.e. let ΓK(B) ≡ ∑K
i=1 E(wi). The best K-basis is the treelet basis with the highest score

BL = arg max
B`:0≤`≤p−1

ΓK(B`) . (6)

It is the basis that best compresses the data with only K components. In case of degeneracies,

we choose the coordinate system with the smallest `. Furthermore, to estimate the score ΓK for

a particular data set, we use cross-validation (CV); i.e. the treelets are constructed using subsets

of the original data set and the score is computed on independent test sets to avoid overfitting.

Both theoretical calculations (Sec. 3.2) and simulations (Sec. 4.1) indicate that an energy-based

measure is useful for detecting natural groupings of variables in data. Many alternative measures

(e.g. Fisher’s discriminant score, classification error rates, entropy and other sparsity measures)

can also be used. For the classification problem in Sec. 5.1, for example, we define a discriminant

score that measures how well a coordinate separates data from different classes.

3 Theory

3.1 Large Sample Properties of the Treelet Transform

12



In this section, examine the large sample properties of treelets. We introduce a more general

definition of consistency that takes into account the fact that the treelet operator (based on cor-

relation coefficients) is multi-valued, and study the method under the stated conditions. We also

describe a bootstrap algorithm for quantifying the stability of the algorithm in practical applica-

tions. The details are as follows.

First some notation and definitions: Let T (Σ) = JT ΣJ denote the covariance matrix after

one step of the treelet algorithm when starting with covariance matrix Σ. Let T `(Σ) denote the

covariance matrix after ` steps of the treelet algorithm. Thus, T ` = T ◦ · · · ◦ T corresponds to T

applied ` times. Define ||A||∞ = maxj,k |Ajk| and let

Tn(Σ, δn) =
⋃

||Λ−Σ||∞≤δn

T (Λ). (7)

Define T 1
n (Σ, δn) = Tn(Σ, δn), and

T `
n (Σ, δn) =

⋃

Λ∈T `−1
n

T (Λ), ` ≥ 2. (8)

Let Σ̂n denote the sample covariance matrix. We make the following assumptions:

(A1) Assume that x has finite variance and satisfies one of the following three assumptions: (a)

each xj is bounded or (b) x is multivariate normal or (c) there exist M and s such that E(|xjxk|q) ≤
q!M q−2s/2 for all q ≥ 2.

(A2) The dimension pn satisfies: pn ≤ nc for some c > 0.

Theorem 1 Suppose that (A1) and (A2) hold. Let δn = K
√

log n/n where K > 2c. Then, as

n, pn →∞,

P(T `(Σ̂n) ∈ T `
n (Σ, δn), ` = 1, . . . , pn) → 1. (9)

Some discussion is in order. The result says that T `(Σ̂n) is not too far from T `(Λ) for some Λ

close to Σ. It would perhaps be more satisfying to have a result that says that ||T `(Σ)− T `(Σ̂)||∞
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converges to 0. This would be possible if one used covariances to measure similarity, but not in

the case of correlation coefficients.

For example, it is easy to construct a covariance matrix Σ with following properties:

1. ρ12 is the largest off-diagonal correlation,

2. ρ34 is nearly equal to ρ12,

3. the 2×2 submatrix of Σ corresponding to x1 and x2 is very different than the 2×2 submatrix

of Σ corresponding to x3 and x4.

In this case, there is nontrivial probability that ρ̂34 > ρ̂12 due to sample fluctuations. Therefore

T (Σ) performs a rotation on the first two coordinates while T (Σ̂) performs a rotation on the third

and fourth coordinates. Since the two corresponding submatrices are quite different, the two rota-

tions will be quite different. Hence, T (Σ) can be quite different from T (Σ̂). This does not pose

any problem since inferring T (Σ) is not the goal. Under the stated conditions, we would consider

both T (Σ) and T (Σ̂) to be reasonable transformations. We examine the details and include the

proof of Theorem 1 in Appendix A.

Because T (Σ1) and T (Σ2) can be quite different even when the matrices Σ1 and Σ2 are close, it

might be of interest to study the stability of T (Σ̂n). This can be done using the bootstrap. Construct

B bootstrap replications of the data and corresponding sample covariance matrices Σ̂∗
n,1, . . . , Σ̂

∗
n,B.

Let δn = J−1
n (1 − α), where Jn is the empirical distribution function of {||Σ̂∗

n,b − Σ̂n||∞, b =

1, . . . , B} and α is the confidence level. If F has finite fourth moments and p is fixed, then it

follows from Corollary 1 of Beran and Srivastava (1985) that

lim
n→∞

PF (Σ ∈ Cn) = 1− α

where Cn = {Λ : ||Λ− Σ̂n||∞ ≤ δn}. Let

An =

{
T (Λ) : Λ ∈ Cn

}
.
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It follows that P(T (Σ) ∈ An) → 1 − α. The set An can be approximated by applying T to all

Σ̂∗
n,b for which ||Σ̂∗

n,b − Σ̂n||∞ < δn. In Sec. 4.1 (Fig. 3), we use the bootstrap method to estimate

confidence sets for treelets.

3.2 Treelets on Covariance Matrices with Block Structures
3.2.1 An Exact Analysis in the Limit n →∞.

Many real life data sets, including gene arrays, consumer data sets and word-documents, display

covariance matrices with approximate block structures. The treelet transform is especially well

suited for representing and analyzing such data — even for noisy data and small sample sizes.

Here we show that treelets provide a sparse representation when covariance matrices have

inherent block structures, and that the loading functions themselves contain information about the

inherent groupings. We consider an ideal situation where variables within the same group are

collinear, and variables from different groups are weakly correlated. All calculations are exact and

computed in the limit of the sample size n → ∞. An analysis of convergence rates later appears

in Sec. 3.2.2.

We begin by analyzing treelets on p random variables that are indistinguishable with respect to

their second-order statistics. We show that the treelet algorithm returns scaling functions that are

constant on groups of indistinguishable variables. In particular, the scaling function on the full

set of variables in a block is a constant function. Effectively, this function serves as an indicator

function of a (sometimes hidden) set of similar variables in data. These results, as well as the

follow-up main results in Theorem 2 and Corollary 1, are due to the fully adaptive nature of the

treelet algorithm — a property that sets treelets apart from methods that use fixed wavelets on a

dendrogram (Murtagh, 2007), or adaptive basis functions on fixed trees (Coifman and Saito, 1996);

see Remark 2 for a concrete example.

Lemma 1 Assume that x = (x1, x2, . . . , xp)
T is a random vector with distribution F , mean 0 and

covariance matrix Σ = σ2
11p×p, where 1p×p denotes a p × p matrix with all entries equal to 1.
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Then, at any level 1 ≤ ` ≤ p − 1 of the tree, the treelet operator T ` (defined in Sec. 3.1) returns

(for the population covariance matrix Σ), an orthogonal decomposition

T `(Σ) =

p−`∑
i=1

s`,iφ`,i +
∑̀
i=1

diψi (10)

with sum variables s`,i = 1√
|A`,i|

∑
j∈A`,i

xj and scaling functions φ`,i = 1√
|A`,i|

Is`,i
, which are

defined on disjoint index subsets A`,i ⊆ {1, . . . , p} (i = 1, . . . , p − `) with lengths |A`,i| and
∑p−`

i=1 |A`,i| = p. The expansion coefficients have variances V{s`,i} = |A`,i|σ2
1 , and V{di} = 0.

In particular, for ` = p− 1,

T p−1(Σ) = s φ +

p−1∑
i=1

diψi (11)

where s = 1√
p
(x1 + . . . + xp) and φ = 1√

p
[1 . . . 1]T .

Remark 1 Uncorrelated additive noise in (x1, x2, . . . , xp) adds a diagonal perturbation to the 2×2

covariance matrices Σ(`), which are computed at each level in the tree (see Eq. 35). Such noise may

affect the order in which variables are grouped, but the asymptotic results of the lemma remain the

same.

Remark 2 The treelet algorithm is robust to noise because it computes data-driven rotations on

variables. On the other hand, methods that use fixed transformations on pre-computed trees are

often highly sensitive to noise, yielding inconsistent results. Consider, for example, a set of four

statistically indistinguishable variables {x1, x2, x3, x4}, and compare treelets to a Haar wavelet

transform on a data-driven dendrogram (Murtagh, 2004). The two methods return the same results

if the variables are merged in the order {{x1, x2}, {x3, x4}}; i.e. s = 1
2
(x1 +x2 +x3 +x4) and φ =

1
2
[1, 1, 1, 1]T . Now, a different realization of the noise may lead to the order {{x1, x2}, x4}, x3}.

A fixed rotation angle of π/4 (as in Haar wavelets) would then return the sum variable sHaar =

1√
2

(
1√
2

(
1√
2
(x1 + x2) + x4

)
+ x3

)
and scaling function φHaar = [ 1

2
√

2
, 1

2
√

2
, 1√

2
, 1

2
]T .

Next we consider data where the covariance matrix is a K ×K block matrix with white noise

added to the original variables. The following main result states that, if variables from different
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blocks are weakly correlated and the noise level is relatively small, then the K maximum variance

scaling functions are constant on each block (see Fig. 2 in Sec. 4 for an example). We make this

precise by giving a sufficient condition (Eq. 13) in terms of the noise level, and within-block and

between-block correlations of the original data. For illustrative purposes, we have reordered the

variables. A p× p identity matrix is denoted by Ip, and a pi × pj matrix with all entries equal to 1

is denoted by 1pi×pj
.

Theorem 2 Assume that x = (x1, x2, . . . , xp)
T is a random vector with distribution F , mean 0

and covariance matrix Σ = C + σ2Ip, where σ2 represents the variance of white noise in each

variable and

C =




C11 C12 . . . C1K

C12 C22 . . . C2K
...

... . . . ...
C1K C2K . . . CKK


 (12)

is a K×K block matrix with “within-block” covariance matrices Ckk = σ2
k1pk×pk

(k = 1, . . . , K)

and “between-block” covariance matrices Cij = σij1pi×pj
(i, j = 1, . . . , K; i 6= j). If

max
1≤i,j≤K

(
σij

σiσj

)
<

1√
1 + 3 max(δ2, δ4)

, (13)

where δ = σ
mink σk

, then the treelet decomposition at level ` = p−K has the form

T p−K(Σ) =
K∑

k=1

skφk +

p−K∑
i=1

diψi (14)

where sk = 1√
pk

∑
j∈Bk

xj , φk = 1√
pk

IBk
and Bk represents the set of indices of variables in block

k (k = 1, . . . , K). The expansion coefficients have means E{sk} = E{di} = 0, and variances

V{sk} = pkσ
2
k + σ2 and V{di} = O(σ2), for i = 1, . . . , p−K.

Note that if the conditions of the theorem are satisfied, then all treelets (both scaling and dif-

ference functions) associated with levels ` > p − K are constant on groups of similar variables.

In particular, for a full decomposition at the maximum level ` = p − 1 of the tree we have the

following key result, which follows directly from Theorem 2:
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Corollary 1 Assume that the conditions in Theorem 2 are satisfied. A full treelet decomposition

then gives T p−1(Σ) = sφ+
∑p−1

i=1 diψi, where the scaling function φ and the K−1 detail functions

ψp−K+1, . . . , ψp−1 are constant on each of the K blocks. The coefficients s and dp−K+1, . . . , dp−1

reflect between-block structures, as opposed to the coefficients d1, . . . , dp−K which only reflect

noise in the data with variances V{di} = O(σ2) for i = 1, . . . , p−K.

The last result is interesting. It indicates a parameter-free way of finding K, the number of blocks,

namely by studying the energy distribution of a full treelet decomposition. Furthermore, the treelet

transform can uncover the block structure even if it is hidden amidst a large number of background

noise variables (see Fig. 3 for a simulation with finite sample size):

Remark 3 Both Theorem 2 and Corollary 1 can be directly generalized to include p0 uncorrelated

noise variables, so that x = (x1, . . . , xp−p0 , xp−p0+1, . . . , xp)
T , where E(xi) = 0 and E(xixj) = 0

for i > p− p0 and j 6= i. For example, if Eq. 13 is satisfied, then the treelet decomposition at level

` = p− p0 is

T p−p0(Σ) =
K∑

k=1

skφk +

p−p0−K∑
i=1

diψi + (0, . . . , 0, xp−p0+1, . . . , xp)
T

Furthermore, note that according to Eq. 41 in the appendix, within-block correlations are smallest

(“worst-case scenario”) when singletons are merged. Thus, the treelet transform is a stabilizing

algorithm; once a few correct coarse-grained variables have been computed, it has the effect of

denoising the data.

3.2.2 Convergence Rates

The aim of this section is to give a rough estimate of the sample size required for treelets to discover

the inherent structures of data. For covariance matrices with block structures, we show that treelets

find the correct groupings of variables if the sample size n À O(log p), where p is the dimension

of the data. This is a significant result, as standard PCA – on the other hand – is consistent if and
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only if p/n → 0 (Johnstone and Lu, 2004), i.e. when n À O(p). The result is also comparable to

that in Bickel and Levina (2007) for regularization of sparse nearly diagonal covariance matrices.

One main difference is that their paper assumes an a priori known ordered set of variables in which

the covariance matrix is sparse, whereas treelets find such an ordering and coordinate system as

part of the algorithm. The argument for treelets and a block covariance model goes as follows.

Assume that there are K blocks in the population covariance matrix Σ. Define AL,n as the

event that the K maximum variance treelets, constructed at level L = p−K of the tree, for a data

set with n observations, are supported only on variables from the same block. In other words, let

AL,n represent the ideal case where the treelet transform finds the exact groupings of variables. Let

E` denote the event that at level ` of the tree, the largest between-block sample correlation is less

than the smallest within-block sample correlation,

E` = {max ρ̂
(`)
B < min ρ̂

(`)
W }.

According to Eqs.31-32, the corresponding population correlations

max ρ
(`)
B < ρ1 ≡ max

1≤i,j≤K

(
σij

σiσj

)
, min ρ

(`)
W > ρ2 ≡ 1√

1 + 3 max(δ2, δ4)
,

where δ = σ
mink σk

, for all `. Thus, a sufficient condition for E` is that {max |ρ̂(`)
B − ρ

(`)
B | <

t} ∩ {max |ρ̂(`)
W − ρ

(`)
W | < t} , where t = (ρ2 − ρ1)/2 > 0. We have that

P(AL,n) ≥ P
( ⋂

0≤`<L

E`

)
≥ P

( ⋂

0≤`<L

{max |ρ̂(`)
B − ρ

(`)
B | < t} ∩ {max |ρ̂(`)

W − ρ
(`)
W | < t}

)
.

If (A1) holds, then it follows from Lemma 3 that

P(AC
L,n) ≤

∑

0≤`<L

(
P(max |ρ̂(`)

B − ρ
(`)
B | > t) + P(max |ρ̂(`)

W − ρ
(`)
W | > t)

)
≤ Lc1p

2e−nc2t2

for positive constants c1, c2. Thus, the requirement P(AC
L,n) < α is satisfied if the sample size

n ≥ 1

c2t2
log

(
Lc1p

2

α

)
.

From the large-sample properties of treelets (Sec. 3.1), it follows that treelets are consistent if

n À O(log p).
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4 Treelets and a Linear Error-In-Variables Mixture Model

In this section, we study a simple error-in-variables linear mixture model (factor model) which,

under some conditions, gives rise to covariance matrices with block structures. Under this model,

we compare treelets with PCA and variable selection methods. An advantage of introducing a

concrete generative model is that we can easily relate our results to the underlying structures or

components of real data; for example, different chemical substances in spectroscopy data, genes

from the same pathway in microarray data, etc.

In light of this, consider a linear mixture model with K components and additive noise. Each

multivariate observation x ∈ Rp has the form

x =
K∑

j=1

ujvj + σz . (15)

The components or “factors” uj are random (but not necessarily independent) variables with vari-

ances σ2
j . The “loading vectors” vj are fixed, but typically unknown linearly independent vectors.

In the last term, σ represents the noise level, and z ∼ Np(0, I) is a p-dimensional random vector.

In the unsupervised setting, we are given a training set {xi}n
i=1 sampled from Eq. 15. Unsu-

pervised learning tasks include, for example, inference on the number of components K, and on

the underlying vectors vj . In the supervised setting, we consider a data set {xi, yi}n
i=1, where the

response value y of an observation x is a linear combination of the variables uj with a random

noise term ε,

y =
K∑

j=1

αjuj + ε . (16)

The standard supervised learning task in regression and classification is prediction of y for new

data x, given a training set {xi, yi}n
i=1.

Linear mixture models are common in many fields, including spectroscopy and gene expression

analysis. In spectroscopy, Eq. 15 is known as Beer’s law, where x is the logarithmic absorbance

spectrum of a chemical substance measured at p wavelengths, uj are the concentrations of con-
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stituents with pure absorbance spectra vj , and the response y is typically one of the components,

y = ui. In gene data, x is the measured expression level of p genes, uj are intrinsic activities of

various pathways, and each vector vj represents the set of genes in a pathway. The quantity y is

typically some measure of severity of a disease, such as time until recurrence of cancer. A linear

relation between y and the values of uj , as in Eq. 16, is commonly assumed.

4.1 Treelets and a Linear Mixture Model in the Unsupervised Setting

Consider data {xi}n
i=1 from the model in Eq. 15. Here we analyze an illustrative example with

K = 3 components and loading vectors vk = I(Bk), where I is the indicator function, and

Bk ⊂ {1, 2, . . . , p} are sets of variables with sizes pk = |Bk| (k = 1, 2, 3). A more general analysis

is possible but may not provide more insight.

The unsupervised task is to uncover the internal structure of the linear mixture model from

data, e.g. to infer the unknown structure of the vectors vk, including the sizes pk of the sets Bk.

The difficulty of this problem depends, among other things, on possible correlations between the

random variables uj , the variances of the components uj , and interferences (overlap) between the

loading vectors vk. We present three examples with increasing difficulty. Standard methods, such

as principal component analysis, succeed only in the simplest case (Example 1), whereas more

sophisticated methods such as sparse PCA (elastic nets) sometimes require oracle information to

correctly fit tuning parameters in the model. The treelet transform seems to perform well in all

three cases. Moreover, the results are easy to explain by computing the covariance matrix of the

data.

Example 1: Uncorrelated Factors and Non-Overlapping Loading Vectors

The simplest case is when the random variables uj are all uncorrelated for j = 1, 2, 3, and the

loading vectors vj are non-overlapping. The population covariance matrix of x is then given by
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Σ = C + σ2Ip where the noise-free matrix

C =




C11 0 0 0
0 C22 0 0
0 0 C33 0
0 0 0 0


 (17)

is a 4×4 block matrix with the first three blocks Ckk = σ2
k1pk×pk

(k = 1, 2, 3), and the last diagonal

block having all entries equal to zero.

Assume that σk À σ for k = 1, 2, 3. This is a specific example of a spiked covariance

model (Johnstone, 2001); the three components corresponding to distinct large eigenvalues or

“spikes” of a model with background noise. As n → ∞ with p fixed, PCA recovers the hidden

vectors v1, v2, and v3, since these three vectors exactly coincide with the principal eigenvectors

of Σ. A treelet transform with a height L determined by cross-validation and a normalized energy

criterion returns the same results — which is consistent with Sec. 3.2 (Theorem 2 and Corollary 1).

The difference between PCA and treelets becomes obvious in the “small n, large p regime”.

In the joint limit p, n → ∞, standard PCA computes consistent estimators of the vectors vj (in

the presence of noise) if and only if p(n)/n → 0 (Johnstone and Lu, 2004). For an analysis of

PCA for finite p, n, see for example (Nadler, 2007). As described in Sec. 3.2.2, treelets require

asymptotically far fewer observations with the condition for consistency being log p(n)/n → 0.

Example 2: Correlated Factors and Non-Overlapping Loading Vectors

If the random variables uj are correlated, treelets are far better than PCA at inferring the underlying

localized structure of the data — even asymptotically. Again, this is easy to explain and quantify

by studying the data covariance structure. For example, assume that the loading vectors v1, v2 and

v3 are non-overlapping, but that the corresponding factors are dependent according to

u1 ∼ N(0, σ2
1), u2 ∼ N(0, σ2

2), u3 = c1u1 + c2u2 . (18)
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The covariance matrix is then given by Σ = C + σ2Ip where

C =




C11 0 C13 0
0 C22 C23 0
C13 C23 C33 0
0 0 0 0


 (19)

with Ckk = σ2
k1pk×pk

(note that σ2
3 = c2

1σ
2
1 + c2

2σ
2
2), C13 = c1σ

2
11p1×p3 and C23 = c2σ

2
21p2×p3 . Due

to the correlations between uj , the loading vectors of the block model no longer coincide with the

principal eigenvectors, and it is difficult to extract them with PCA.

We illustrate this problem by the example in Zou et al. (2006). Specifically, let

v1 = [

B1︷ ︸︸ ︷
1 1 1 1

B2︷ ︸︸ ︷
0 0 0 0

B3︷︸︸︷
0 0 ]T

v2 = [0 0 0 0 1 1 1 1 0 0 ]T

v3 = [0 0 0 0 0 0 0 0 1 1 ]T

(20)

where there are p = 10 variables total, and the sets Bj are disjoint with p1 = p2 = 4, p3 = 2

variables, respectively. Let σ2
1 = 290, σ2

2 = 300, c1 = −0.3, c2 = 0.925, and σ = 1. The

corresponding variance σ2
3 of u3 is 282.8, and the covariances of the off-diagonal blocks are σ13 =

−87 and σ23 = 277.5.

The first three PCA vectors for a training set of 1000 samples are shown in Fig. 2 (left). It

is difficult to infer the underlying vectors vi from these results, as ideally, we would detect that,

for example, the variables (x5, x6, x7, x8) are all related and extract the latent vector v2 from only

these variables. Simply thresholding the loadings and discarding small values also fails to achieve

this goal (Zou et al., 2006). The example illustrates the limitations of a global approach even with

an infinite number of observations. In Zou et al. (2006), the authors show by simulation that a

combined L1 and L2-penalized least squares method, which they call sparse PCA or elastic nets,

correctly identifies the sets of important variables if given “oracle information” on the number

of variables p1, p2, p3 in the different blocks. Treelets are similar in spirit to elastic nets as both

methods tend to group highly correlated variables together. In this example, the treelet algorithm

is able to find both K, the number of components in the mixture model, and the hidden loading
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Figure 2: In Example 2, PCA fails to find the important variables in the three-component mixture
model, as the computed eigenvectors (left) are sensitive to correlations between different compo-
nents. On the other hand, the three maximum energy treelets (right) uncover the underlying data
structures.

vectors vi — without any a priori knowledge or parameter tuning. Fig. 2 (right) shows results

from a treelet simulation with a large sample size (n = 1000) and a height L = 7 of the tree,

determined by cross-validation (CV) and an energy criterion. The three maximum energy basis

vectors correspond exactly to the hidden loading vectors in Eq. 20.

Example 3: Uncorrelated Factors and Overlapping Loading Vectors

Finally, we study a challenging example where the first two loading vectors v1 and v2 are over-

lapping, the sample size n is small, and the background noise level is high. Let {B1, . . . ,B4} be

disjoint subsets of {1, . . . , p}, and let

v1 = I(B1) + I(B2) , v2 = I(B2) + I(B3) , v3 = I(B4) (21)

where I(Bk) as before represents the indicator function for subset k (k = 1, . . . , 4). The population

covariance matrix is then given by Σ = C + σ2Ip where the noiseless matrix has the general form

C =




C11 C12 0 0 0
C12 C22 C23 0 0
0 C23 C33 0 0
0 0 0 C44 0
0 0 0 0 0




(22)
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with diagonal blocks C11 = σ2
11p1×p1 , C22 = (σ2

1 + σ2
2)1p2×p2 , C33 = σ2

21p3×p3 , C44 = σ2
31p4×p4 ,

and off-diagonal blocks C12 = σ2
11p1×p2 and C23 = σ2

21p2×p3 . Consider a numerical example with

n = 100 observations, p = 500 variables, and noise level σ = 0.5. We choose the same form

for the components u1, u2, u3 as in (Bair et al., 2006), but associate the first two components with

overlapping loading vectors v1 and v2. Specifically, the components are given by u1 = ±0.5 with

equal probability, u2 = I(U2 < 0.4), and u3 = I(U3 < 0.3) where I(x) is the indicator of x,

and Uj are all independent uniform random variables in [0,1]. The corresponding variances are

σ2
1 = 0.25, σ2

2 = 0.24, and σ2
3 = 0.21. As for the blocks Bk, we consider B1 = {1, . . . , 10},B2 =

{11, . . . , 50},B3 = {51, . . . , 100}, and B4 = {201, . . . , 400}.

Inference in this case is challenging for several different reasons. The sample size n < p, the

loading vectors v1 and v2 are overlapping in the region B2 = {11, . . . , 50}, and the signal-to-noise

ratio is low with the variance σ2 of the noise essentially being of the same size as the variances

σ2
j of uj . Furthermore, the condition in Eq. 13 is not satisfied even for the population covariance

matrix. Despite these difficulties, the treelet algorithm is remarkably stable, returning results that

by and large correctly identify the internal structures of the data. The details are summarized

below.

Fig. 3 (top center) shows the energy score of the best K-basis at different levels of the tree.

We used 5-fold cross-validation; i.e. we generated a single data set of n = 100 observations,

but in each of the 5 computations the treelets were constructed on a subset of 80 observations

with 20 observations left out for the energy score computation. The five curves as well as their

average clearly indicate a “knee” at the level L = 300. This is consistent with our expectations

that the treelet algorithm mainly merges noise variables at levels L ≥ |⋃k Bk|. For a tree with

“optimum” height L = 300, as indicated by the CV results, we then constructed a treelet basis on

the full data set. Fig. 3 (top right) shows the energy of these treelets sorted according to descending

energy score. The results indicate that we have two dominant treelets, while the remaining treelets

have an energy that is either slightly higher or of the same order as the variance of the noise. In

25



Fig. 3 (bottom left), we plot the loadings of the four highest energy treelets. “Treelet 1” (red)

is approximately constant on the set B4 (the support of v3), “Treelet 2” (blue) is approximately

piecewise constant on blocks B1, B2 and B3 (the support of v1 and v2), while the low-energy

degenerate treelets 3 (green) and 4 (magenta) seem to take differences between variables in the sets

B1, B2 and B3. Finally, we computed 95% confidence bands of the treelets using 1000 bootstrap

samples and the method described in Sec. 3.1). Fig. 3 (bottom right) indicate that the treelet results

for the two maximum energy treelets are rather stable despite the small sample size and the low

signal-to-noise ratio. Most of the time the first treelet selects variables from B4, and most of the

time the second treelet selects variables from B2 and either B1 or B3 or both sets. The low-energy

treelets seem to pick up differences between blocks B1, B2 and B3, but the exact order in which

they select the variables vary from simulation to simulation. As described in the next section, for

the purpose of regression, the main point is that the linear span of the first few highest energy

treelets is a good approximation of the span of the unknown loading vectors, Span{v1, . . . ,vK}.

4.2 The Treelet Transform as a Feature Selection Scheme Prior to Regres-
sion

Knowing some of the basic properties of treelets, we now examine a typical regression or classifi-

cation problem with data {xi, yi}n
i=1 given by Eqs. (15) and (16). As the data x are noisy, this is

an error-in-variables type problem. Given a training set, the goal is to construct a linear function

f : Rp → R to predict ŷ = f(x) = r · x + b for a new observation x.

Before considering the performance of treelets and other algorithms in this setting, we review

some of the properties of the optimal mean-squared error (MSE) predictor. For simplicity, we

consider the case y = u1 in Eq. 16, and denote by P1 : Rp → Rp the projection operator onto the

space spanned by the vectors {v2, . . . ,vK}. In this setting, the unbiased MSE-optimal estimator

has a regression vector r = vy/‖vy‖2, where vy = v1 − P1v1. The vector vy is the part of the

loading vector v1 that is unique to the response variable y = u1, since the projection of v1 onto
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Figure 3: Top left: The vectors v1 (blue), v2 (green), v3 (red) in Example 3. Top center: The
“score” or total energy of K = 3 maximum variance treelets computed at different levels of the
tree with 5-fold cross-validation; dotted lines represent the five different simulations and the solid
line the average score. Top right: Energy distribution of the treelet basis for the full data set at
an “optimal” height L = 300. Bottom left: The four treelets with highest energy. Bottom right:
95% confidence bands by bootstrap for the two dominant treelets.

the span of the loading vectors of the other components (u2, . . . , uK) has been subtracted. For

example, in the case of only two components, we have that

vy = v1 − v1 · v2

‖v2‖2
v2 (23)

The vector vy plays a central role in chemometrics, where it is known as the net analyte sig-

nal (Lorber et al., 1997; Nadler and Coifman, 2005a). Using this vector for regression yields a

mean squared error of prediction

E{(ŷ − y)2} =
σ2

‖vy‖2
(24)

We remark that similar to shrinkage in point estimation, there exist biased estimators with smaller
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MSE (Gruber, 1998; Nadler and Coifman, 2005b), but for large signal to noise ratios (σ/‖vy‖ ¿
1), such shrinkage is negligible.

Many regression methods (including multivariate least squares, partial least squares (PLS),

principal component regression (PCR), etc.) attempt to compute the optimal regression vector

or net analyte signal (NAS). It can be shown that in the limit n → ∞, both PLS and PCR are

MSE-optimal. However, in some applications, the number of variables is much larger than the

number of observations (p À n). The question at hand is then, what the effect of small sample

size is on these methods, when combined with noisy high-dimensional data. Both PLS and PCR

first perform a global dimensionality reduction from p to k variables, and then apply least squares

linear regression on these k features. As described in (Nadler and Coifman, 2005b), their main

limitation is that in the presence of noisy high dimensional data, the computed projections are

noisy themselves. For fixed p and n, a Taylor expansion of the regression coefficient as a function

of the noise level σ shows that these methods have an averaged prediction error

E{(ŷ − y)2} ' σ2

‖vy‖2

[
1 +

c1

n
+

c2 σ2

µ‖vy‖2

p2

n2
(1 + o(1))

]
. (25)

In Eq. 25, the coefficients c1 and c2 are both O(1) constants, independent of σ, p and n. The quan-

tity µ depends on the specific algorithm used, and is a measure of the variances and covariances of

the different components uj , and of the amount of interferences of their loading vectors vj . The

key point of this analysis is that when p À n, the last term in (25) can dominate and lead to large

prediction errors. This emphasizes the limitations of global dimensionality reduction methods, and

the need for robust feature selection and dimensionality reduction of the data prior to application

of learning algorithms such as PCR and PLS.

Other common approaches to dimensionality reduction in this setting are variable selection

schemes, specifically those that choose a small subset of variables based on their individual correla-

tion with the response y. To analyze their performance, we consider a more general dimensionality
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Figure 4: Left: The vector vy (only the first 150 coordinates are shown as the rest are zero). Right:
Averaged prediction errors of 20 simulation results for the methods, from top to bottom: PLS on all
variables (blue), supervised PLS with variable selection (purple), PLS on treelet features (green),
and PLS on projections onto the true vectors vi (red).

reduction transformation T : Rp → Rk defined by k orthonormal projections wi ∈ Rp,

Tx = (x ·w1,x ·w2, . . . ,x ·wk) (26)

This family of transformations includes variable subset selection methods, where each projection

wj selects one of the original variables. It also includes wavelet methods and our proposed treelet

transform. Since an orthonormal projection of a Gaussian noise vector in Rp is a Gaussian vector

in Rk, and a relation similar to Eq. 15 holds between Tx and y, formula (25) still holds, but with

the original dimension p replaced by k, and with vy replaced by its projection Tvy,

E{(ŷ − y)2} ' σ2

‖Tvy‖2

[
1 +

c1

n
+

c2 σ2

µ‖Tvy‖2

k2

n2
(1 + o(1))

]
(27)

Eq. (27) indicates that a dimensionality reduction scheme should ideally preserve the net analyte

signal of y (‖Tvy‖ ' ‖vy‖), while at the same time represent the data by as few features as

possible (k ¿ p).

The main problem of PCA is that it optimally fits the noisy data, yielding for the noise-

free response ‖Tvy‖/‖vy‖ ' (1 − cσ2p2/n2). The main limitation of variable subset selection
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schemes is that in complex settings with overlapping vectors vj , such schemes may at best yield

‖Tvy‖/‖vy‖ < 1. Due to high dimensionality, the latter methods may still achieve better predic-

tion errors than methods that use all the original variables. However, with a more general variable

transformation/compression method, one could potentially better capture the NAS. If the data x

are a priori known to be smooth continuous signals, a reasonable choice is wavelet compression,

which is known to be asymptotically optimal. In the case of unstructured data, we propose to use

treelets.

To illustrate these points, we revisit Example 3 in Sec. 4.1, and compare treelets to the variable

subset selection scheme of Bair et al. (2006) for PLS, as well as global PLS on all variables.

As before, we consider a relatively small training set of size n = 100 but here we include 1500

additional noise variables, so that p = 2000 À n. We furthermore assume that the response is

given by y = 2u1. The vectors vj are shown in Fig. 3 (top left). The two vectors v1 and v2

overlap, but v1 (associated with the response) and v3 are orthogonal. Therefore, the response

vector unique to y (the net analyte signal) is given by Eq. 23; see Fig. 4 (left).

To compute vy, all the 100 first coordinates (the set B1 ∪ B2 ∪ B3) are needed. However, a

feature selection scheme that chooses variables based on their correlation to the response will pick

the first 10 coordinates and then the next 40, i.e. only variables in the set B1∪B2 (the support of the

loading vector v1). Variables numbered 51 to 100 (set B3), although critical for prediction of the

response y = 2u1, are uncorrelated with it (as u1 and u2 are uncorrelated) and are thus not chosen,

even in the limit n →∞. In contrast, even in the presence of moderate noise and a relatively small

sample size of n = 100, the treelet algorithm correctly joins together the subsets of variables 1-10,

11-50, 51-100 and 201-400 (i.e. variables in the sets B1,B2,B3,B4). The rest of the variables,

which contain only noise are combined only at much higher levels in the treelet algorithm, as

they are asymptotically uncorrelated. Because of this, using only coarse-grained sum variables

in the treelet transform yields near optimal prediction errors. In Fig. 4 (right) we plot the mean

squared error of prediction (MSEP) for 20 different simulations with prediction error computed

30



on an independent test set of 500 observations. The different methods are PLS on all variables

(MSEP=0.17), supervised PLS with variable selection as in Bair et al. (2006) (MSEP=0.09), PLS

on the 50 treelet features with highest variance, with the level of the treelet determined by leave-

one-out cross validation (MSEP=0.035), and finally PLS on the projection of the noisy data onto

the true vectors vi assuming they were known (MSEP = 0.030). In all cases, the optimal number

of PLS projections (latent variables) is also determined by leave-one-out cross validation. Due to

the high dimensionality of the data, choosing a subset of the original variables performs better than

full-variable methods. However, choosing a subset of treelet features performs even better yielding

an almost optimal prediction error (σ2/‖vy‖2 ≈ 0.03); compare the green and red curves in the

figure.

5 Examples with Real Data Sets

5.1 Hyperspectral Analysis and Classification of Biomedical Tissue

To illustrate how our method works for data with highly complex dependencies between variables,

we use an example from hyperspectral imaging of biomedical tissue. Here we analyze a hyper-

spectral image of an H&E stained microarray section of normal human colon tissue (see Angeletti

et al. (2005) for details on the data collection method). This is an ordered data set of moderate to

high dimension. One scan of the tissue specimen returns a 1024× 1280 data cube or “hyperspec-

tral image”, where each pixel location contains spectral measurements at 28 known frequencies

between 420 nm and 690 nm. These spectra give information about the chemical structure of the

tissue. There is however redundancy as well as noise in the spectra. The challenge is to find the

right coordinate system for this relatively high-dimensional space, and extract coordinates (fea-

tures) that contain the most useful information about the chemicals and substances of interest.

We consider the problem of tissue discrimination using only spectral information. With the

help of a pathologist, we manually label about 60000 pixels of the image as belonging to three
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different tissue types (colon cell nuclei, cytoplasm of colon cells, cytoplasm of goblet cells). Fig. 5

shows the locations of the labeled pixels, and their tissue-specific transmission spectra. Fig. 6

shows an example of how treelets can learn the covariance structure for colon cell nuclei (Tissue

type 3). The method learns both the tree structure and a basis through a series of Jacobi rotations

(see top right panel). By construction, the basis vectors are localized and supported on nested

clusters in the tree (see the bottom left and top left panels). As a comparison, we have also com-

puted the PCA eigenvectors. The latter vectors are global and involve all the original variables (see

bottom right panel).

In a similar way, we apply the treelet transform to the training data in a 5-fold cross-validation

test on the full data set with labeled spectra: Using a (maximum height) treelet decomposition, we

construct a basis for the training set in each fold. To each basis vector, we assign a discriminant

score that quantifies how well it distinguishes spectra from two different tissue types. The total

score for vector wi is defined as

Ê(wi) =
K∑

j=1

K∑

k=1;k 6=j

H(p̂
(j)
i ||p̂(k)

i ) (28)

where K = 3 is the number of classes, and H(p̂
(j)
i ||p̂(k)

i ) is the Kullback-Leibler distance between

the estimated marginal density functions p̂
(j)
i and p̂

(k)
i of class-j and class-k signals, respectively, in

the direction of wi. We project our training data onto the K (< 28) most discriminant directions,

and build a Gaussian classifier in this reduced feature space. This classifier is finally used to

label the test data and to estimate the misclassification error rate. The left panel in Fig. 7 shows the

average CV error rate as a function of the number of local discriminant features. (As a comparison,

we show similar results for Haar-Walsh wavelet packets and a local discriminant basis (Saito et al.,

2002) which use the same discriminant score to search through a library of orthonormal wavelet

bases.) The straight line represents the error rate if we apply a Gaussian classifier directly to the 28

components in the original coordinate system. The key point is that with 3 treelet features, we get

the same performance as if we used all the original data. Using more treelet features yields an even
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lower misclassification rate. (Because of the large sample size, the curse of dimensionality is not

noticeable for < 15 features.) These results indicate that a treelet representation has advantages

beyond the obvious benefits of a dimensionality reduction. We are effectively “denoising” the

data by changing our coordinate system and discarding irrelevant coordinates. The right panel

in Fig. 7 shows the three most discriminant treelet vectors for the full data set. These vectors

resemble continuous-valued versions of the indicator functions in Sec. 3.2. Projecting onto one

of these vectors has the effect of first taking a weighted average of adjacent spectral bands, and

then computing a difference between averages of bands in different regions of the spectrum. (In

Sec. 5.3, Fig. 10, we will see another example that the loadings themselves contain information

about structure in data.)
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Figure 5: Left: Microscopic image of a cross-section of colon tissue. At each pixel position, the
spectral characteristics of the tissue is measured at 28 different wavelengths (λ = 420, 430, . . . , 690
nm). For our analysis, we manually label about 60000 individual spectra: Red marks the locations
of spectra of “Tissue type 1” (nuclei), green “Tissue type 2” (cytoplasm of colon cells), and blue
corresponds to samples of “Tissue type 3” (cytoplasm of goblet cells). Right: Spectral signatures
of the 3 different tissue types. Each plot shows the sample mean and standard deviation of the
log-transmission spectra.
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Table 1: Classification test errors for an internet advertisement data set
full data set reduced data set final representation with

classifier (1555 variables) (760 variables) coarse-grained treelet features
LDA 5.5% 5.1% 4.5%
1-NN 4.0% 4.0% 3.7%

5.2 A Classification Example with an Internet Advertisement Data Set

Here we study an internet advertisement data set from the UCI ML repository (Kushmerick, 1999).

This is an example of an unordered data set of high dimension where many variables are collinear.

After removal of the first three continuous variables, this set contains 1555 binary variables and

3279 observations, labeled as belonging to one of two classes. The goal is to predict whether a

new observation (an image in an internet page) is an internet advertisement or not, given values of

its 1555 variables (various features of the image).

With standard classification algorithms, one can easily obtain a generalization error of about

5%. The first column in Table 1, labeled “full data set”, shows the misclassification rate for linear

discriminant analysis (LDA) (with the additional assumption of a diagonal covariance matrix),

and for 1-nearest neighbor (1-NN) classification. The average is taken over 25 randomly selected

training and test sets, with 3100 and 179 observations each.

The internet-ad data set has several distinctive properties that are clearly revealed by an analysis

with treelets: First of all, several of the original variables are exactly linearly related. As the

data are binary (-1 or 1), these variables are either identical or of opposite values. In fact, one

can reduce the dimensionality of the data from 1555 to 760 without loss of information. The

second column in the table labeled “reduced data set” shows the decrease in error rate after a

lossless compression where we have simply removed redundant variables. Furthermore, of these

remaining 760 variables, many are highly related, with subsets of similar variables. The treelet

algorithm automatically identifies these groups, as the algorithm reorders the variables during the

basis computation, encoding the information in such a group with a coarse-grained sum variable
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and difference variables for the residuals. Fig. 8, left, shows the correlation matrix of the first 200

out of 760 variables in the order they are given. To the right, we see the corresponding matrix, after

sorting all variables according to the order in which they are combined by the treelet algorithm.

Note how the (previously hidden) block structures “pop out”.

A more detailed analysis of the reduced data set with 760 variables shows that there are more

than 200 distinct pairs of variables with a correlation coefficient larger than 0.95. Not surprisingly,

as shown in the right column of Table 1, treelets can further increase the predictive performance

on this data set, yielding results competitive with other feature selection methods in the litera-

ture (Zhao and Liu, 2007). All results in Table 1 are averaged over 25 different simulations. As in

Sec. 4.2, the results are achieved at a level L < p−1, by projecting the data onto the treelet scaling

functions, i.e. by only using coarse-grained sum variables. The height L of the tree is found by

10-fold cross-validation and a minimum prediction error criterion.

5.3 Classification and Analysis of DNA Microarray Data

We conclude with an application to DNA microarray data. In the analysis of gene expression, many

methods first identify groups of highly correlated variables and then choose a few representative

genes for each group (a so called gene signature). The treelet method also identifies subsets of

genes that exhibit similar expression patterns, but in contrast, replaces each such localized group by

a linear combination that encodes the information from all variables in that group. As illustrated in

previous examples in the paper, such a representation typically regularizes the data which improves

the performance of regression and classification algorithms.

Another advantage is that the treelet method yields a multi-scale data representation well-suited

for the application. The benefits of hierarchical clustering in exploring and visualizing microar-

ray data are well recognized in the field (Eisen et al., 1998; Tibshirani et al., 1999). It is, for

example, known that a hierarchical clustering (or dendrogram) of genes can sometimes reveal in-

teresting clusters of genes worth further investigation. Similarly, a dendrogram of samples may
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identify cases with similar medical conditions. The treelet algorithm automatically yields such a

re-arrangement and interpretation of the data. It also provides an orthogonal basis for data repre-

sentation and compression.

We illustrate our method on the leukemia data set of Golub et al. (1999). This data monitor

expression levels for 7129 genes and 72 patients, suffering from acute lymphoblastic leukemia

(ALL, 47 cases) or acute myeloid leukemia (AML, 25 cases). The data are known to have a low

intrinsic dimensionality, with groups of genes having similar expression patterns across samples

(cell lines). The full data set is available at http://www.genome.wi.mit.edu/MPR, and includes a

training set of 38 samples and a test set of 34 samples.

Prior to analysis, we use a standard two-sample t-test to select genes that are differentially

expressed in the two leukemia types. Using the training data, we perform a full (i.e. maximum

height) treelet decomposition of the p = 1000 most “significant” genes. We sort the treelets

according to their energy content (Eq. 5) on the training samples, and project the test data onto the

K treelets with the highest energy score. The reduced data representation of each sample (from p

genes to K features) is finally used to classify the samples into the two leukemia types, ALL or

AML. We examine two different classification schemes:

In the first case, we apply a linear Gaussian classifier (LDA). As in Sec. 5.2, the treelet trans-

form serves as a feature extraction and dimensionality reduction tool prior to classification. The

appropriate value of the dimension K is chosen by 10-fold cross-validation (CV). We divide the

training set at random into 10 approximately equal-size parts, perform a separate t-test in each

fold, and choose the K-value that leads to the smallest CV classification error (Fig. 9, left).

In the second case, we classify the data using a novel two-way treelet decomposition scheme:

we first compute treelets on the genes, then we compute treelets on the samples. As before, each

sample (patient) is represented by K treelet features instead of the p original genes. The dimension

K is chosen by cross-validation on the training set. However, instead of applying a standard classi-

fier, we construct treelets on the samples using the new patient profiles. The two main branches of
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Table 2: Leukemia misclassification rates; courtesy of Zou and Hastie (2005).
Method Ten-fold CV error Test error

Golub et al. (1999) 3/38 4/34
Support vector machines (Guyon et al., 2002) 2/38 1/34

Nearest shrunken centroids (Tibshirani et al., 2002) 2/38 2/34
Penalized logistic regression (Zhu and Hastie, 2004) 2/38 1/34

Elastic nets (Zou and Hastie, 2005) 3/38 0/34
LDA on treelet features 2/38 3/34

Two-way treelet decomposition 0/38 1/34

the associated dendrogram divide the samples into two classes, which are labeled using the training

data and a majority vote. Such a two-way decomposition — of both genes and samples — lead to

classification results competitive with other algorithms; see Fig. 9, right, and Table 2 for a com-

parison with benchmark results in Zou and Hastie (2005). Moreover, the proposed method returns

orthogonal functions with continuous-valued information on hierarchical groupings of genes or

samples.

Fig. 10 (left) displays the original microarray data, with rows (genes) and columns (samples)

ordered according to a hierarchical two-way clustering with treelets. The graph to the right shows

the three maximum energy treelets on ordered samples. Note that the loadings are small for the

two cases that are misclassified. In particular, “Treelet 2” is a good “continuous-valued” indicator

function of the true classes. The results for the treelets on genes are similar. The key point is that

whenever there is a group of highly correlated variables (genes or samples), the algorithm tends to

choose a coarse-grained variable for that whole group (see, for example, “Treelet 3” in the figure).

The weighting is adaptive, with loadings that reflect the complex internal data structure.

6 Conclusions

In the paper, we described a variety of situations where the treelet transform outperforms PCA and

some common variable selection methods. The method is especially useful as a feature extrac-

tion and regularization method in situations where variables are collinear and/or the data is noisy
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with the number of variables, p, far exceeding the number of observations, n. The algorithm is

fully adaptive, and returns both a hierarchical tree and loading functions that reflect the internal

localized structure of the data. We showed that, for a covariance model with block structure, the

maximum energy treelets converge to a solution where they are constant on each set of indistin-

guishable variables. Furthermore, the convergence rate of treelets is considerably faster than PCA,

with the required sample size for consistency being n À O(log p) instead of n À O(p). Fi-

nally, we demonstrated the applicability of treelets on several real data sets with highly complex

dependencies of variables.
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A Proof of Theorem 1

Let x = (x1, . . . , xp)
T be a random vector with distribution F and covariance matrix Σ = ΣF . Let

ρij denote the correlation between xi and xj . Let x1, . . . ,xn be a sample from F , and denote the

sample covariance matrix and sample correlations by Σ̂ and ρ̂ij . Let Sp denote all p× p covariance

matrices. Let

Fn(b) = {F : ΣF is positive definite , min
1≤j≤pn

σj ≥ b}.

Any of the assumptions (A1a), (A1b) or (A1c) are sufficient to guarantee certain exponential

inequalities.
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Lemma 2 There exist positive constants c1, c2 such that, for every ε > 0,

P(||Σ̂jk − Σjk||∞ > ε) ≤ c1p
2
ne−nc2ε2 . (29)

Hence,

||Σ̂jk − Σjk||∞ = OP

(√
log n

n

)
.

Proof. Under (A1), (29) is an immediate consequence of standard exponential inequalities and the

union bound. The last statement follows by setting εn = K
√

log n/n for sufficiently large K and

applying (A2). ¥

Lemma 3 Assume either that (i) x is multivariate normal or that (ii) max1≤j≤p |xj| ≤ B for some

finite B and minj σj ≥ b > 0. Then, there exist positive constants c3, c4 such that, for every ε > 0,

P(max
jk

|ρ̂jk − ρjk| > ε) ≤ c3p
2e−nc4ε2 . (30)

Proof. Under normality this follows from Kalisch and Bühlmann (2007). Under (ii) note that

h(σ1, σ2, σ12) = σ12/(σ1σ2) satisfies

|h(σ1, σ2, σ12)− h(σ′1, σ
′
2, σ

′
12)| ≤

3 max

{
|σ1 − σ′1|, |σ2 − σ′2|, |σ12 − σ′12|

}

b2
.

The result then follows from the previous lemma. ¥

Let Jθ denote the 2× 2 rotation matrix of angle θ. Let

JΣ =

(
cos(θ(Σ)) − sin(θ(Σ))
sin(θ(Σ)) cos(θ(Σ))

)
(31)

denote the Jacobi rotation where

θ(Σ) =
1

2
tan−1

(
2Σ12

Σ11 − Σ22

)
. (32)
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Lemma 4 Let F be a bivariate distribution with 2 × 2 covariance matrix Σ. Let J = JΣ and

Ĵ = JΣ̂. Then,

P(||ĴT Σ̂Ĵ − JT ΣJ ||∞ > ε) ≤ c5p
2e−nc6ε2 . (33)

Proof. Note that θ(Σ) a bounded, uniformly continuous function of Σ. Similarly, the entries of Jθ

are also bounded, uniformly continuous functions of Σ. The result then follows from (29). ¥

For any pair (α, β), let θ(α, β) denote the angle of the principal component rotation and let

J(α, β, θ) denote the Jacobi rotation on (α, β). Define the selection operator

∆ : Sp → {(j, k) : 1 ≤ j < k ≤ p}

by ∆(Σ) = (α, β) where ρα,β = argmaxijρij . In case of ties, define ∆(Σ) to be the set of pairs

(α, β) at which the maximum occurs. Hence, ∆ is multivalued on a subset S∗p ⊂ Sp of measure 0.

The one-step treelet operator T : Sp → Sp is defined by

T (Σ) =

{
JT ΣJ : J = J(α, β, θ(α, β)), (α, β) ∈ ∆(Σ)

}
. (34)

Formally, T is a multivalued map because of potential ties.

Proof of Theorem 1. The proof is immediate from the lemmas. For the matrices Σ̂n, we have

that ||Σ̂n − Σ||∞ < δn except on a set Ac
n of probability tending to 0 at rate O(n−(K−2c)). Hence

on the set An = {Σ̂n : ||Σ̂∗
n,b − Σ̂n||∞ < δn}, we have that T (Σ̂n) ∈ Tn(Σ). The same holds at

each step. ¥

B Proof of Lemma 1

Consider first the case, where at each level in the tree, the treelet operator combines a coarse-

grained variable with a singleton according to {{x1, x2}, x3}, . . .. Let s0 = x1. For ` = 1,

the 2 × 2 covariance submatrix Σ(0) ≡ V{(s0, x2)} = σ2
1

(
1 1
1 1

)
. A principal component
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analysis of Σ(0) gives θ1 = π/4 and s1 = 1√
2
(x1 + x2). By induction, for 1 ≤ ` ≤ p − 1,

Σ(`−1) ≡ V{(s`−1, x`+1)} = σ2
1

(
`

√
`√

` 1

)
. PCA on Σ(`−1) gives the (unconstrained) rotation

angle θ` = arctan
√

`, and the new sum variable s` = 1√
`+1

∑`+1
i=1 xi.

More generally, at level ` of the tree, the treelet operator combines two sum variables u =

1√
m

∑
i∈Au

xi and v = 1√
n

∑
j∈Av

xj , whereAu,Av ⊆ {1, . . . , p} denote two disjoint index subsets

with m = |Au| and n = |Av| number of terms, respectively. The 2× 2 covariance submatrix

Σ(`−1) ≡ V{(u, v)} = σ2
1

(
m

√
mn√

mn n

)
. (35)

The correlation coefficient ρuv = 1 for any pair (u, v); thus, the treelet operator T` is a multivariate

function of Σ. A principal component analysis of Σ(`−1) gives the eigenvalues λ1 = m+n, λ2 = 0,

and eigenvectors e1 = 1√
m+n

(
√

m,
√

n)T , e2 = 1√
m+n

(−√n,
√

m)T . The rotation angle

θ` = arctan

√
n

m
. (36)

The new sum and difference variables at level ` are given by

s` = 1√
m+n

(+
√

mu +
√

nv) = 1√
m+n

∑
i∈{Au,Av} xi

d` = 1√
m+n

(−√nu +
√

mv) = 1√
m+n

(−√
n
m

∑
i∈Au

xi +
√

m
n

∑
j∈Av

xj)
(37)

The results of the lemma follow.

C Proof of Theorem 2

Assume that variables from different blocks have not been merged for levels `′ < `, where 1 ≤ ` ≤
p. From Lemma 1, we then know that any two sum variables at the preceding level `− 1 have the

general form u = 1√
m

∑
i∈Au

xi and v = 1√
n

∑
j∈Av

xj , where Au and Av are two disjoint index

subsets with m = |Au| and n = |Av| number of terms, respectively. Let δk = σ/σk.

If Au ⊆ Bi and Av ⊆ Bj where i 6= j, i.e. the subsets belong to different blocks, then

Σ(`−1) = V{(u, v)} =

(
mσ2

i

√
mnσij√

mnσij nσ2
j

)
+ σ2I . (38)
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The corresponding “between-block” correlation coefficient

ρ
(`−1)
B =

σij

σiσj

√
mn

√
m + δ2

i

√
n + δ2

j

≤ σij

σiσj

(39)

with equality (“worst-case scenario”) if and only if σ = 0.

If Au,Av ⊂ Bk, i.e. the subsets belong to the same block, then

Σ(`−1) = V{(u, v)} = σ2
k

(
m

√
mn√

mn n

)
+ σ2I . (40)

The corresponding “within-block” correlation coefficient

ρ
(`−1)
W =

1√
1 + m+n

mn
δ2
k + 1

mn
δ4
k

≥ 1√
1 + 3 max(δ2

k, δ
4
k)

(41)

with the “worst-case scenario” occurring when m = n = 1, i.e. when singletons are combined.

Finally, the main result of the theorem follows from the bounds in Eq. 39 and Eq. 41, and the fact

that

max ρ
(`−1)
B < min ρ

(`−1)
W (42)

for ` = 1, 2, . . . , p−K is a sufficient condition for not combining variables from different blocks.

If the inequality Eq. 13 is satisfied, then the coefficients in the treelet expansion have the general

form in Eq. 37 at any level ` of the tree. With white noise added, the expansion coefficients have

variances V{s`} = (m + n)σ2
k + σ2 and V{d`} = σ2 m2+n2

mn(m+n)
. Furthermore, E{s`} = E{d`} = 0.
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Figure 6: Top left: Learnt tree structure for nuclei (Tissue Type 1). In the dendrogram, the
height of each U-shaped line represents the distance dij = (1− ρij)/2, where ρij is the correlation
coefficient for the two variables combined. The leaf nodes represent the p = 28 original spectral
bands. Top right: 2D scatter plots of the data at levels ` = 1, . . . , p − 1. Each plot shows 500
randomly chosen data points; the lines indicate the first principal directions and rotations relative
to the variables that are combined. (Note that a Haar wavelet corresponds to a fixed π/4 rotation.)
Bottom left: Learnt orthonormal basis. Each row represents a localized vector, supported on a
cluster in the hierarchical tree. Bottom right: Basis computed by a global eigenvector analysis
(PCA).
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Figure 7: Left: Average misclassification rate (in a 5-fold cross-validation test) as a function of
the number of top discriminant features retained, for a treelet decomposition (rings), and for Haar-
Walsh wavelet packets (crosses). The constant level around 2.5% indicates the performance of a
classifier directly applied to the 28 components in the original coordinate system. Right: The top
3 local discriminant basis (LDB) vectors in a treelet decomposition of the full data set.
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Figure 8: Left: The correlation matrix of the first 200 out of 760 variables in the order they were
originally given. Right: The corresponding matrix, after sorting all variables according to the
order in which they are combined by the treelet algorithm.
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Figure 9: Number of misclassified cases as a function of the number of treelet features. Left:
LDA on treelet features; ten-fold cross-validation gives the lowest misclassification rate (2/38) for
K = 3 treelets; the test error rate is then 3/34. Right: Two-way decomposition of both genes and
samples; the lowest CV misclassification rate (0/38) is for K = 4; the test error rate is then 1/34.
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Figure 10: Left, the gene expression data with rows (genes) and columns (samples) ordered accord-
ing to a hierarchical two-way clustering with treelets. (For display purposes, the expression levels
for each gene are here normalized across the samples to zero mean and unit standard deviation.)
Right, the three maximum energy treelets on ordered samples. The loadings of the highest-energy
treelet (red) is a good predictor of the true labels (blue circles).
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