
Interpolating Wavelet Transforms

David L. Donoho

Department of Statistics

Stanford University

October, 1992

Abstract

We describe several \wavelet transforms" which characterize smoothness spaces

and for which the coe�cients are obtained by sampling rather than integration. We

use them to re-interpret the empirical wavelet transform, i.e. the common practice

of applying pyramid �lters to samples of a function.
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1 Introduction

1.1 Interpolating Transforms

Recently, several articles (e.g. (DeVore, Jawerth, Lucier, 1992), (Antonini, Barlaud, Daubechies,

1991)) have pointed out that compression of image data can be accomplished by quantiza-
tion of wavelet coe�cients. One calculates the wavelet coe�cients, and quantizes them into
discrete levels, which are represented by short bit strings (and perhaps further compressed

by run-length schemes).

For compressing sequences of moving images, it is interesting to consider the possibility

of a \wavelet compression machine" based on special-purpose massively-parallel hardware.
In the abstract, such a machine would dedicate one processor per wavelet coe�cient, and
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this processor would perform the calculation and subsequent quantization for that wavelet

coe�cient. The machine would operate in cycles where data would be acquired, all the

wavelet coe�cients computed and compressed in parallel, then the compressed data sent

to a mass storage device. Ignoring the input/output issues, and focusing on the image

processing issues, the processing cycle time of such a machine is determined by the longest

time it takes to compute and compress any single wavelet coe�cient.

For the usual wavelet transforms based on pyramid �ltering, most coe�cients take about

C � log2(n) operations to compute, where n is the image extent. To compute a coe�cient

near the middle or top of the pyramid, it is necessary to compute coe�cients at all �ner

scales, and there are as many as log2(n) of those scales.

The \hardware" issues just raised lead to the following mathematical question: What is

the smallest amount of computation required in a wavelet transform to calculate one single

wavelet coe�cient? We believe this question has practical interest, because it describes the

parallel complexity of the wavelet transform, but we take this as a purely mathematical
issue here.

In this paper we develop an interpolating wavelet transform. This is a non-orthogonal
transform with formal resemblance to orthogonal wavelet transforms, in that it represents
the object in terms of dilations and translations of a basic function { but for which the

coe�cients are obtained from linear combinations of samples rather than from integrals.
The transform depends in a fundamental way on the interpolation scheme of Deslauriers-
Dubuc.

The interpolating transform is optimal from the point of view of computing individual
coe�cients in parallel. The optimality is expressed by two properties. (For simplicity we

focus on the 1-dimensional case in this paper.)

[IT1] Computational Cost: Each coe�cient �j;k of the transform can be calculated, inde-
pendently of all other coe�cients, in no more than D + 2 multiply-adds.

[IT2] Coe�cient Decay. The coe�cients have decay properties for D-times di�erentiable
functions which are comparable to the decay properties of coe�cients of smooth

orthogonal wavelet decompositions.

The interpolating transform has versions for the line and the interval, both of which we

describe.

The \wavelet compression machine" described above would process wavelet coe�cients
entirely in parallel; that is, each wavelet coe�cient would be compressed without waiting
to inquire about the value of any other. This proposal seems reasonable because of results

showing that simple thresholding of orthogonal wavelet coe�cients is a kind of optimal

compression algorithm (DeVore, Jawerth, and Popov, 1990). One may object to simplis-

tic nature of the data compression model employed there, but such results provide some

evidence that parallel thresholding of orthogonal coe�cients is a reasonable procedure. In
contrast, one may imagine that the non-orthogonality or some other non-standard feature

of the interpolating transform spoils everything, and makes simple thresholding of inter-

polating coe�cients a very bad idea. If so, we would need to use some other compression

scheme, perhaps a computationally intensive one, and we would end up with a fast trans-
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form giving coe�cients which are very time-consuming to compress. Fortunately, this does

not seem to be the case.

[IT3] Parallel Compression. A simple thresholding rule, processing each interpolating co-

e�cient independently of the value of any other coe�cients, yields near-optimal com-

pression, in the sense that the reconstruction accuracy for a �xed number of terms

is near-optimal, in a minimax sense, over Besov classes, when error is measured in

L1-norm.

Thresholded interpolating transforms are extremal with respect to machine cycles for

parallel computation and compression, and yet may be quite acceptable with respect to

reconstruction accuracy.

1.2 Empirical and Hybrid Transforms

Our emphasis in this article is mathematical. In fact, our interest in the interpolating
transform actually arose, not from compression, but from trying to understand a sometimes
confusing issue { the fact that the phrase \Wavelet Transform" is presently used in two
distinctly di�erent ways. (In this article we exclude discussion of the continuous wavelet
transform).

In the mathematical literature it refers to a transform W from functions f on the line
or the interval to coe�cient sequences (�j;k). The coe�cients are de�ned by integrals, and
for coe�cients de�ned in this way there are a variety of powerful results showing how the
wavelet coe�cients characterize the modulus of continuity of the transformed function.

In the signal processing and engineering literature, it refers to a transform W n
n that

takes n sampled data { a digitized sound or image { into n coe�cients by a scheme of
hierarchical pyramid �ltering. The transform may be accomplished in order n time.

The link between these two uses of the phrase \wavelet transform" is, of course, that
the mathematical wavelet transform has a representation in terms of �ltering, in which
one uses �lters which could also be pro�tably applied in signal processing and engineering

problems.
To be more precise we recall the pyramid �ltering algorithm for obtaining theoretical

wavelet coe�cients of functions in L2[0; 1], as described in [CDJV]. Given n = 2j1 integrals

�j1;k =
R 1
0 'j1;k(t)f(t)dt, k = 0; : : : ; 2j1 � 1, \sampling" f near 2�j1k, one iteratively applies

a sequence of decimating high pass and low pass operators Hj ; Lj : R
2j ! R2j�1 via

(�j�1;�) = Lj � (�j;�)
(�j�1;�) = Hj � (�j;�)

for j = j1; j1 � 1; : : : ; j0 + 1, producing a sequence of n = 2j1 coe�cients

((�j0;�); (�j0;�); (�j0+1;�); : : : ; (�j1�1;�)):

The transformation Uj0;j1 mapping (�j1;�) into this sequence is a real orthogonal transfor-
mation. The coe�cients calculated by this �ltering process are actually integrals:

�j0;k =
Z 1

0
'j0;k(t)f(t)dt; 0 � k < 2j0
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�j;k =
Z 1

0
 j;k(t)f(t)dt; 0 � k < 2j:

Hence, starting from �ne-scale integrals (�j1;k)k, �ltering delivers the integrals (�j0;k)k and

(�j;k)k at coarser scales.

For empirical work, one does not have access to the �ne scale integrals (�j1;k), and so

one can not actually use this �ltering to calculate the theoretical wavelet coe�cients of a

function f(t). However, it is interesting to consider applying the same �ltering algorithm

to sampled data (f(k=n))k. Observe that (for k away from the boundary) 'j1;k has integral

2�j1=2 and that it is supported near k=2j1 . Hence the �j1;k behave much like the samples

bj1;k = n�1=2f(k=n) k = 0; : : : ; n� 1:

One adjusts for the fact that the 'j1;k near the boundary do not have the same integral as

at the interior by a preconditioning transformation PDb = (~�j1;�), a�ecting only the D + 1

values at each end of the segment (bj1;k)
2j1�1
k=0 . Then one applies the algorithm of [CDJV],

to ( ~�j1;�) in place of (�j1;k) producing not theoretical wavelet coe�cients but what we call

empirical wavelet coe�cients:

~�(n) = ((~�j0;�); (~�j0;�); (~�j0+1;�); : : : ; (~�j1�1;�)):

What is the connection between these two \Wavelet Transforms?" For applications in
Donoho and Johnstone (1992a,b,c) it would be extremely desirable for the �rst n coe�cients

in the empirical transform to be exactly the same as the �rst n coe�cients in the theoretical
transform. Then we could be sure that empirical coe�cients of a smooth function have the
same properties as theoretical coe�cients.

This, however, is too much to hope for. Obviously in some sense the �rst n empirical
wavelet coe�cients of the samples of f are approximately the same as the �rst n theoretical
wavelet coe�cients of f . The more smooth and regular the function f , the better the

agreement. However, we are not interested here in such approximation arguments.
Instead, we explore here the idea that the empirical wavelet coe�cients are precisely

the �rst n theoretical coe�cients of f in a slightly modi�ed transform. In what follows, we
construct a \hybrid wavelet transform" Wn, depending on n = 2j1 , which has the following

character. One starts from a wavelet transform based on orthogonal wavelets �' and � of

compact support where the moments of � through order �D are zero, and the wavelets have
�R continuous derivatives.

[ET1] Wn maps continuous functions on [0; 1] into countable coe�cient sequences

~� =
�
( ~�j0;�); (~�j0;�); (~�j0+1;�); : : : ; (~�j1�1;�) : : :

�
:

[ET2] There are smooth functions ( ~'j0;k), (
~ j;k), 0 � k < 2j, j � j0 which are �R-times

di�erentiable functions of support width � C2�j so that every function f 2 C[0; 1]

has an expansion
f =

X
k

~�j0;k ~'j0;k +
X
j�j0

X
k

~�j;k ~ j;k:

with uniform convergence of partial sums (the convergence is unconditional if f has

some regularity).
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[ET3] The �rst n coe�cients
�
( ~�j0;k)k; (~�j0;k)k; : : : ; (~�j1�1;�)

�
result from pre-conditioned

pyramid �ltering Uj1;j0 � PD of the samples (bj;k = n�1=2f(k=n)).

[ET4] The �rst n basis functions are nearly orthogonal with respect to the sampling measure:

hf; gin = n�1
Pn�1

k=0 f(k=n)g(k=n). The constants of equivalence do not depend on

n = 2j1 but may depend on j0 and on the wavelet � being used.

[ET5] The coe�cients � = Wnf measure smoothness.

Each Besov space B�
p;q[0; 1] with 1=p < � < min( �R; �D) and 0 < p; q � 1 is charac-

terized by the coe�cients in the sense that

k~�kb�
p;q
� k( ~�j0;k)kk`p + (

X
j�j0

(2js(
X
k

j~�j;kjp)1=p)q)1=q;

is an equivalent norm to the norm of B�
p;q[0; 1]; here s � �+1=2�1=p, with constants

of equivalency that do not depend on n, but which may depend on p; q, j0 and the
wavelet �lters.

Each Triebel-Lizorkin space F �
p;q[0; 1] with 1=p < � < min( �R; �D), 1 < p; q � 1 is

characterized by the coe�cients, in the sense that, with �j;k the indicator function of
the interval [k=2j ; (k + 1)=2j),

k~�kf�
p;q
� k( ~�j0;k)kk`p + k(

X
j�j0

2jsq
X
k

j~�j;kjq�j;k)1=qkLp[0;1];

is an equivalent norm to the norm of F �
p;q[0; 1]; here s � � + 1=2.

In words, the empirical wavelet coe�cients, which derive solely from �nite �ltering
calculations, are actually the �rst n theoretical coe�cients for a nicely behaved transform
of continuous functions.

This interpretation gives us several insights immediately. It shows for example that
empirical wavelet coe�cients of a smooth function automatically obey the same type of de-

cay estimates as theoretical orthogonal wavelet coe�cients. It also shows that \shrinking"
empirical wavelet coe�cients towards zero (by any procedure whatever, linear or nonlinear)

always acts as a \smoothing operator" in any of a wide range of smoothness measures. It

also shows that sampling followed by appropriate interpolation of the sampled values is a
\smoothing operator" in any of a wide range of smoothness classes. Finally it shows that

the theoretical wavelet coe�cients are close to the empirical wavelet coe�cients in a precise
sense. In Donoho and Johnstone (1992c) and Donoho (1992) these facts are crucial for the

study of certain nonlinear methods for smoothing and de-noising noisy, sampled data.
We emphasize that our aim in developing this hybrid transform is not to change the

practice of empirical wavelet transforms, but to allow us to interpret and understand the
transforms as currently practiced.

1.3 Contents

In the paper which follows, we develop the interpolating and hybrid transforms in a leisurely

series of steps, which we believe are interesting in their own right.
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Section 2 develops the interpolating wavelet transform using a non-orthogonal analog

of multiresolution analysis based on interpolation schemes. From an algorithmic point of

view, a particularly interesting instance of the IWT is based on interpolating wavelets of

compact support, which were previously de�ned for another purpose by Deslauriers-Dubuc.

They involve two-scale relations with �nitely many nonzero coe�cients, and possess the

property [IT1] above. This section formulates results showing that the wavelet coe�cients

for the interpolating transform have decay properties comparable to those of orthogonal

wavelet coe�cients in case the function is continuous. Formally, the coe�cients characterize

Besov and Triebel-Lizorkin spaces with smoothness parameter � > 1=p. Such spaces are

spaces of uniformly continuous functions. Special cases are H�older(-Zygmund) spaces and

Sobolev spaces.

Section 3 develops an interpolating wavelet transform for the interval. It is based on

the interpolating wavelets of compact support for the line, and bears a striking similarity

to the [CDJV] wavelet transform for the interval based on orthogonal wavelets of compact
support. It has a structure which agrees with the interpolating transform for the line \at
the heart" of the interval, while having boundary-corrected wavelets \at the edges". This
transform also characterizes those Besov and Triebel-Lizorkin spaces on the interval which
consist of continuous functions. This fact is used to study the quality of reconstructions

based on simple thresholding of interpolating coe�cients.
Section 4 develops a hybrid transform for functions on the line. It consists of wavelets

which at �ne resolutions are interpolating, and at coarse resolutions approach orthogonal
wavelets. This transform also characterizes Besov and Triebel spaces with � > 1=p.

Finally, Section 5 develops the hybrid transform on the interval, and establishes the

properties [ET1]-[ET5] mentioned above. Because of what takes place in Sections 2-4,
these properties are quite evident.

Section 6 sketches what happens in the critical case of analysing bounded, discontinuous
functions; discusses the relation between this work and other work with some contact, for
example work on Schauder bases, on other wavelet-like transforms, and on interpolating

splines.

2 Interpolating Transforms on the Line

We now develop a transform for C(R) which has the same formal dyadic structure as

orthonormal wavelet transforms, but for which the coe�cients are obtained by sampling

rather than integration.

2.1 Interpolating Wavelets

De�nition 2.1 An (R;D) interpolating wavelet is a father function ' satisfying �ve
conditions:

[IW1] Interpolation. ' interpolates the Kronecker sequence at the integers:

'(k) =

8<
:

1 k = 0

0 k 6= 0
: (2.1)
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[IW2] Two-Scale Relation. ' can be represented as a linear combination of dilates and

translates of itself:

'(x) =
X
k

'(k=2)'(2x� k): (2.2)

[IW3] Polynomial Span. For an integer D � 0, the collection of formal sums
P

k �k'(t� k)
contains all polynomials of degree D.

[IW4] Regularity. For some real R > 0, ' is H�older continuous of order R.

[IW5] Localization. ' and all its derivatives through order bRc decay rapidly:

j'(m)(x)j � A` � (1 + jxj)�`; x 2 R; ` > 0; 0 � m � bRc: (2.3)

There are two well-known families of such functions. The �rst are the interpolating

spline wavelets. Let D be an odd integer > 0, and LD be the fundamental polynomial spline
of degree D (Schoenberg, 1972), i.e. the piecewise polynomial with knots at the integers

k 2 Z, continuity CD�1, and satisfying the interpolation conditions (2.1). This function is
a (D� 1;D) interpolating wavelet; it is regular of order R = D� 1; its derivatives through
order D � 1 decay exponentially with distance from 0; it satis�es a two-scale relation; and
it generates all polynomials of degree D through its translates.

The second family consists of the Deslauriers-Dubuc Fundamental functions. Dubuc
(1986), Deslauriers and Dubuc (1987,1989). Let D be an odd integer > 0. These are

functions FD de�ned by interpolating the Kronecker sequence at the integers to a function
on the binary rationals by repeated application of the following rule. If FD has already
been de�ned at all binary rationals with denominator 2j, j � 0, extend it, by polynomial
interpolation, to all binary rationals with denominator 2j+1, i.e. all points halfway between
previously de�ned points. Speci�cally, to de�ne the function at (k + 1=2)=2j when it is

already de�ned at all k=2j , �t a polynomial �j;k to the data (k0=2j ; FD(k
0=2j)) for k0 2

f(k � (D � 1)=2)=2j ; : : : ; (k + (D + 1)=2)=2jg { this polynomial is unique { and set

FD((k + 1=2)=2j ) � �j;k((k + 1=2)=2j ):

It turns out that this scheme de�nes a function which is uniformly continuous at the

rationals and hence has a unique continuous extension to the reals. This extension de�nes

an (R;D) interpolating wavelet for an R = R(D). Indeed, the �rst three properties [IW1]-
[IW3] come automatically by construction; the last [IW5] by the compact support of FD.

The condition [IW4], regularity, is much less obvious. Deslauriers and Dubuc (1987, 1989)
and Daubechies and Lagarias (1991) develop techniques to estimate the regularity in speci�c

cases. Recently, Saitoh and Beylkin (1992) have shown that FD is the autocorrelation
function of the Daubechies wavelet of degree D + 1; see also Daubechies (1992, Page 210).

Hence, FD is at least as smooth as the corresponding Daubechies wavelet, roughly twice as

smooth. It follows from this and results for Daubechies wavelets that the regularity

R(D) � Const �D; D = 3; 5; 7; : : :

The connection between orthonormal wavelets and interpolating wavelets is valid gen-
erally. If �' is a nice orthonormal scaling function, then its autocorrelation ' = �'? �'(��) is
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an interpolating wavelet. Indeed, smoothness, localization, and the two-scale relation are

inherited from �, and the interpolation conditions on ' are identical to the orthonormality

conditions on �'. Thus, for example, the autocorrelation of the Haar scaling function is the

interpolating Schauder wavelet, the autocorrelation of the Battle-Lemari�e wavelets is an

interpolating polynomial spline wavelet, and the autocorrelation of the Meyer wavelet is

an interpolating wavelet which is C1 and of rapid decay at 1. However, we are primarily

interested here in Deslauriers-Dubuc wavelets.

We emphasize that although we use the term \wavelets" to describe interpolating

wavelets, they are not orthonormal wavelets. At best, interpolating spline wavelets are

cousins of the traditional spline wavelets and Deslauriers-Dubuc wavelets are cousins of

Daubechies wavelets. Nevertheless, we shall operate with these functions in much the same

way as we would with orthonormal wavelets.

2.2 Interpolating Multiresolutions & Transforms

De�ne  (t) = '(2(t� 1
2
)), and, by analogy with the wavelet transform of L2(R), 'j;k(t) =

2j=2'(2jt� k),  j;k(t) = 2j=2 (2jt� k).

Theorem 2.2 Given (R,D)-interpolating wavelet ', we may construct an interpolating

wavelet transform, mapping continuous functions f into sequences ((�j0;k); (�j0;k); (�j0+1;k); : : :)
with each coe�cient �j;k depending only on samples of f at scale 2�j�1 and coarser, and
that any f which is the sum of a polynomial of degree � D and a function in C0(R) can
be reconstructed from its coe�cients,

f =
X
k

�j0;k'j0;k +
X
j�j0

X
k

�j;k j;k; (2.4)

with the in�nite sum converging in sup norm when summed in the right order.

We prove this result by a leisurely discussion, occupying the remainder of this subsec-

tion. It is based on the C0(R) analog of L2(R) multiresolution analysis.

Let Vj denote the vector space of all sums f(t) =
P

k �j;k'j;k(t), where the �j;k are of
at-most polynomial growth in k. The spaces Vj have three important properties, which
follow immediately from [IW1]-[IW3]:

Lemma 2.3 Let Vj be generated by an (R;D)-interpolating wavelet. (1) For any f 2 Vj
the coe�cients �j;k in the sum f =

P
k �j;k'j;k can be recovered by sampling:

�j;k = f(2�jk)=2j=2: (2.5)

(2) We have the inclusion
Vj � Vj+1:

(3) If �D denotes all polynomials of degree � D, then

�D � Vj:
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Because of (2.5), we formally de�ne, for any continuous f , Pjf as the interpolant

2�j=2
P
f(2�jk)'j;k(t). This linear operator acts as the identity on Vj, and so is a kind of

non-orthogonal projection. It is actually well de�ned, by [IW5], for all continuous functions

of at-most polynomial growth. For all continuous functions vanishing at 1, Pjf converges

to f as j increases.

Lemma 2.4 If f 2 C0(R) then

kf � Pjfk1 ! 0; j !1; (2.6)

Proof. Let !(�; f) denote the modulus of continuity

!(�; f) = sup
jhj��

sup
x
jf(x+ h)� f(x)j:

For f 2 C0(R), !(�; f)! 0 as �! 0. In the Appendix will prove the inequality

!(2�j ;Pjf) � C � !(2�j ; f) (2.7)

with C independent of f and j. From (Pjf)(k=2
j) = f(k=2j), we get that for x 2 [0; 1]

jf((k + x)=2j)� (Pjf)((k + x)=2j)j � jf((k + x)=2j)� f(k=2j )j
+j(Pjf)((k + x)=2j)� (Pjf)(k=2

j )j
� !(2�j ; f) + !(2�j ; Pjf)

� C � !(2�j ; f):
Hence

kf � Pjfk1 � C � !(2�j ; f)! 0; j !1:

which proves (2.6). 2
Let Wj be the vector space of all formal sums f(t) =

P
k �j;k j;k, and note that, by the

particular de�nition of  j;k,

 j;k =
p
2 � 'j+1;2k+1:

Hence,Wj � Vj+1. Now suppose, given sequences (�j;k) and (�j;k), we construct a function

f =
X
k

�j;k'j;k +
X
k

�j;k j;k: (2.8)

As f 2 Vj+1, we also have a representation

f =
X

�j+1;k'j+1;k: (2.9)

What is the relation between these two representations? Because
P

k �j;k'j;k and
P
�j+1;k'j+1;k

agree on the coarse grid, we have

�j;k =
p
2 � �j+1;2k; k 2 Z:

Because
P

k �j;k'j;k +
P

k �j;k j;k and
P
�j+1;k'j+1;k agree on the �ne grid, we have

21=2�j+1;2k+1 = �j;k + 2�j=2
X
k0

�j;k0'j;k0((k + 1=2)=2j ):

More interestingly, we can go in the other direction, decomposing any sum of the form (2.9)

as a sum (2.8), expressing f in terms of \gross structure"
P
�j;k'j;k and \detail corrections"P

�j;k j;k.
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Lemma 2.5 Every f 2 Vj+1 has a representation (2.8), with coe�cients

�j;k = 2�j=2 �
�
f((k +

1

2
)=2j)� (Pjf)((k +

1

2
)=2j)

�
(2.10)

This formula shows transparently that the wavelet coe�cients �j;k measure lack of approx-

imation of f by Pjf .

Iterating this two-scale decomposition, we may express any f 2 Vj1 as a sum of a

coarse-scale description in Vj0 , j0 < j1, and a series of detail corrections:

f =
X
k

�j0;k'j0;k +
X

j0�j<j1

X
k

�j;k j;k:

For more general f , not in Vj1 , setting f = Pj1f + (f � Pj1f), and letting j1 tend to 1,

we get formally (assuming now that Pjf ! f as j ! 1 in some appropriate sense) the

inhomogeneous interpolating wavelet expansion (2.4). In fact Lemma 2.4 shows that this

formal expression makes sense under minimal regularity.

Theorem 2.6 Consider the interpolating wavelet transform with respect to an (R;D) in-
terpolating wavelet with R � 0, D � 0. Let f 2 C0(R). Then the inhomogeneous interpo-
lating expansion (2.4) holds, in the sense of uniform convergence:

kf � X
jkj�K

�j0;k'j0;k �
X

j0�j�j0+J

X
jkj�K

�j;k j;kk1 ! 0 (2.11)

as J;K !1.

Proof. The partial sum operator PJ;K implicit in (2.11) is uniformly bounded:

kPJ;Kfk1 � Ckfk1;
compare (7.9)-(7.10) in the appendix. The collection of continuous functions of compact
support is dense in C0(R), and so for each � > 0 there is a compactly supported function
f 0

kf � f 0k1 � �:

Write

PJ;Kf � f = (PJ;Kf � PJ;Kf
0) + (PJ;Kf

0 � f 0) + (f 0 � f);

use the triangle inequality and boundedness of PJ;K to get

kPJ;Kf � fk1 � C � �+ kPJ;Kf 0 � f 0k1 + �:

As f 0 is compactly supported, there exists K 0 so that

PJ;Kf
0 = PJf

0; K � K 0:

By Lemma 2.4 PJf
0 ! f 0 in L1; hence

lim sup
J;K!1

kPJ;Kf � fk1 � C � �:

As this is true for each � > 0, we have the desired convergence. 2

More generally,if f is the sum of a function in C0(R) and a polynomial of degree � D,

the partial sums converge uniformly on compacts.
We thus have a wavelet decomposition which exhibits the (�j;k) explicitly as measures

of error in approximation by Vj, and which reconstructs continuous functions.
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2.3 Characterizing Smoothness

Despite the elementary nature of the interpolating transform, it yields reasonably strong

characterization theorems for H�older classes C�, � > 0, and for those Besov and Triebel

classes embedding into some C�. We develop �rst a result for Besov classes. This implies

immediately results also for H�older (-Zygmund) and L2-Sobolev classes.

To simplify our proofs in the appendix, it is convenient to assume an extra condition

on our interpolating wavelet:

[IW6] Piecewise Finite Dimensionality. The collection F of restrictions f j[0;1] of sums f =P
k �0;k'(t� k) is �nite-dimensional.

Since we are really only interested in Deslauriers-Dubuc wavelets, this assumption is no

restriction. Deslauriers-Dubuc wavelets satisfy [IW6] because they are of compact support.

Spline interpolating wavelets also satisfy [IW6], because they are piecewise polynomial.

The signi�cance of �nite-dimensionality is the following. As the space F consists of
uniformly continuous functions, we have norm equivalences between Lp and L1 norms,
with constants

Np(F) = sup
f2F

kfkL1[0;1]=kfkLp[0;1] <1; p 2 (0;1]:

These constants, along with the localization constants in [IW5], appear implicitly in the
proof of the following theorem.

Theorem 2.7 Consider an interpolating wavelet transform with a wavelet satisfying [IW1]-
[IW6]. Let min(R;D) > � > 1=p, p; q 2 (0;1]. De�ne a norm on the interpolating wavelet
coe�cients

� = ((�j0;�); (�j0;�); (�j0+1;�); : : :)

by
k�kb�

p;q
= k(�j0;�)k`p + (

X
j�j0

(2js(
X
k

j�j;kjp)1=p)q)1=q: (2.12)

with the calibration s � � + 1=2 � 1=p. This is an equivalent norm for the Besov space

B�
p;q(R).

Important corollary: if f 2 B�
p;q with � > 1=p, then the reconstruction of f from its

wavelet coe�cients converges unconditionally to f in the B�
p;q norm { the order in which the

individual terms are summed does not matter. Thus, as an example, if f 2 C�, � 2 (0; 1),
and we use interpolating wavelets of regularity (R � 1;D � 1), �nite interpolating wavelet
expansions converge unconditionally in C� norm. The proof of this remark: simply that

the norm of the di�erence between f and its approximation is equivalent to the sequence

space norm of the sequence consisting of those coe�cients in which were omitted in forming

the approximation.

The limitation � > 1=p is essential rather than technical. Those Besov spaces with
� < 1=p do not have point functionals f(t) as bounded linear functionals. Hence a transform

based on samples cannot be well-de�ned over such spaces. Those spaces with � = 1=p are
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critical cases, which need to be discussed separately (Section 6.1). Those spaces with

� > 1=p embed into H�older classes C� for � = �� 1=p, and hence the interpolating wavelet

transform makes sense and converges uniformly as in Theorem 2.2.

A complete proof of Theorem 2.7 is given in the appendix. If we were not interested

in working hard to get an \optimal" theorem covering the full range � > 1=p, some simple

o�-the-shelf results could take us part of the way.

It is known that using the wavelet coe�cients �� of a su�ciently nice orthonormal wavelet

expansion, the norm k��kb�pq is an equivalent norm for Besov space (Meyer, 1990), Frazier,

Jawerth, and Weiss (1991). A given function f with orthonormal coe�cients �� also has

interpolating wavelet coe�cients �; and the coe�cients in the two expansions are related,

formally, by operators T and S:

�� = T�; � = S��:

If the operators S and T are both bounded on b�p;q then the norm k�kb�
pq

is equivalent to

k��kb�
pq
, and hence to the Besov space norm. Frazier, Jawerth and Weiss (1991, page 59),

have de�ned a notion of almost diagonal operators between sequence spaces b�pq. (Compare
also the notion Op(M
) of Meyer (1990, Vol II) and the applications on pp.334-335 there,
and the article of Ja�ard (1990)). Almost-diagonal operators are bounded.

Simple calculations reveal that T and S are almost diagonal for the Besov sequence
spaces b�pq, � > 1, p � 1. Let � denote the mother orthogonal wavelet; then T ((j; k); (j 0; k0)) =R � j;k j0;k0. For a su�ciently large ` > 0, �((j; k); (j 0; k0)) = (1+ j2�jk�2�j

0

k0j=2�min(j;j0))`.
Then calculations such as we give in the proof of Theorem 2.7 show

jT ((j; k); (0; 0))j = j
Z

� j;k j �
(
C` � 2�j=22�jmin( �D;R)�((j; k); (0; 0)) j � 0

C` � 2�j=2�((j; k); (0; 0)) j � 0
:

The decay as j ! +1 is due to the regularity of  and the vanishing moments of � . The
lack of decay as j ! �1 is due to the lack of vanishing moments for  .

For S we have the expression that S((j; k); (j0; k0)) = the (j; k) interpolating wavelet

coe�cient of � j0;k0 . Hence for some constants (ck),

jS((j; k); (0; 0))j = 2�j=2 � j
X
k

ck � (k=2
j+1)j

�
(
C` � 2�j=22�jmin(D; �R)�((j; k); (0; 0)) j � 0

C` � 2�j=2�((j; k); (0; 0)) j � 0
:

Notice again the lack of decay as j ! �1.

These expressions, and obvious translations and dilations to other scales, give that for
small enough � > 0

jS((j; k); (j0; k0))j � C�;� � 2(�1=2��)jj0�jj � 2�j� � �((j; k); (j0; k0))

for any � 2 (1 + �;min(D; �R) � �). From the de�nition of almost-diagonal operators (e.g.

Frazier, Jawerth and Weiss (1991), Page 59), it follows that the operator S is almost
diagonal for each � 2 (1 + �;min(D; �R) � �). Similarly, the operator T is almost diagonal

for each � 2 (1 + �;min( �D;R)� �).
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We stress that these \matrix arguments" are simply heuristic, and to get a full formal

proof, covering the full range � > 1=p, we use a di�erent approach, based on approximation

rates.

2.4 Triebel Smoothness Classes

We now state a result for Triebel classes F �
p;q. This implies results for Lp Sobolev classes

Wm
p with 1 < p �1.

Theorem 2.8 Consider an interpolating wavelet transform based on [IW1]-[IW6]. Let

min(R;D) > � > 1=p, p 2 (1;1], q 2 [1;1]. De�ne a norm on the interpolating wavelet

coe�cients

� = ((�j0;�); (�j0;�); (�j0+1;�); : : :)

by
k�kf�

p;q
� k�j0;kk`p + k(X

j

2jsq
X
k

j�j;kjq�j;k)1=qkLp;

with the calibration s � � + 1=2, and with �j;k the indicator function of the interval

[k=2j ; (k + 1)=2j). This is an equivalent norm to the norm of F �
p;q.

The limitation � > 1=p applies, just as in the Besov case. Because the almost-
diagonality concept applies to boundedness on Triebel spaces as well, (see Frazier, Jawerth,
and Weiss, (1991) Page 59), the matrix argument given above can be used to get a quick
proof for the case � > 1, p; q > 1.

2.5 Sampling, Interpolation and Smoothing

Suppose that we take samples (2�j1f(k=2j1))k2Z. We may, using just those samples, obtain
the interpolating wavelet coe�cients of f at all levels up to and including j1� 1. However,
we cannot know the coe�cients at any �ner scales. Symbolize this truncation process by
the operator Tj1 ; hence, with � denoting the wavelet coe�cients of f , we observe

Tj1� = ((�j0;�); (�j0;�); (�j0+1;�); : : : ; (�j1�1;�)):

Let Ej1 denote the operator that �lls in all the unknown wavelet coe�cients by zero (\zero-

extension"), giving a complete array of wavelet coe�cients,

Ej1Tj1� = ((�j0;�); (�j0;�); (�j0+1;�); : : : ; (�j1�1;�);0;0; : : :)

Because of the zero-extension process, we have

kEj1Tj1�kbsp;q � k�kbs
p;q
: (2.13)

kEj1Tj1�kfsp;q � k�kfs
p;q
: (2.14)

Consider now the inverse wavelet transform of Ej1Tj1�. By (2.13)-(2.14) this has smaller

Besov and/or Triebel norms than f . This object has an alternate description. It is just Pj1f .

Hence, it is an interpolation operator: it takes the samples (f(k=2j1 ))k2Z and produces a
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function de�ned for all t 2 R. If the interpolating wavelet was a fundamental spline, this

is a spline interpolation. If the interpolating wavelet was a Deslauriers-Dubuc fundamental

function, this is a Deslauriers-Dubuc interpolation. With these re-interpretations, (2.13)-

(2.14) say the following.

Corollary 2.9 Consider an interpolation process, such as cardinal spline interpolation or

Deslauriers-Dubuc interpolation, which can be interpreted as being of the form Pjf for an

(R;D) interpolating wavelet '. There are equivalent norms for the function spaces B�
p;q

and F �
p;q with 1=p < � < min(R;D) such that sampling followed by interpolation is norm-

reducing on all those spaces.

3 Interpolating Transform on the Interval

We now develop interpolating wavelet transforms for C[0; 1]. These are based on adapting

the inhomogeneous interpolating transforms for �D + C0(R) to \life on the interval".
We concentrate exclusively on Interpolating Wavelets of Compact Support. So in this

section ' and  derive from the Deslauriers-Dubuc fundamental wavelet FD. We will often
write Kj as shorthand for f0 � k < 2jg.

Theorem 3.1 Let j0 be a non-negative integer satisfying 2j0 > 2D + 2 (non-interacting

boundaries). There exists a collection of functions '
[ ]
j;k and  

[ ]
j;k such that every f 2 C[0; 1]

has a representation

f =
2j0�1X
k=0

�j;k'
[ ]
j0;k

+
X
j�j0

2j�1X
k=0

�j;k 
[ ]
j;k;

with uniform convergence of partial sums j � j1 as j1 !1. Here the wavelet coe�cients
are given by

�j;k = 2�j=2f(k=2j ); k 2 Kj ;

and, with P
[0;1]
j f =

P2j�1
k=0 �j;k'

[ ]
j;k,

�j;k = 2�j=2
�
f((k + 1=2)=2j ) � (P

[0;1]
j f)((k + 1=2)=2j )

�
:

The functions '
[ ]
j;k and  

[ ]
j;k are interpolating:

'
[ ]
j;k(k

02�j) = 2j=2�k;k0; k0 2 Kj

 
[ ]
j;k(k

02�j�1) = 2j=2�2k+1;k0; k0 2 Kj+1

The '
[ ]
j;k derive from the interpolating wavelets 'j;k for the line as follows. At the \heart"

of the interval, they are the same:

'
[ ]
j;k = 'j;kj[0;1]; D < k < 2j �D � 1

and at the \edges" of the interval, they are dilations of certain special boundary-adjusted
wavelets:

'
[ ]
j;k(x) = 2j=2'#

k (2
jx� k); 0 � k � D;
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'
[ ]
j;2j�k�1(x) = 2j=2'[k(2

jx� 2j � k � 1); 0 � k � D:

The boundary-adjusted wavelets '
#
k and '[k are compactly supported and exhibit the same

degree of regularity as the corresponding wavelets on the line. The functions  
[ ]
j;k derive

from the wavelets on the line  j;k as follows. At the \heart" of the interval, they are the

same:

 
[ ]
j;k =  j;kj[0;1]; bD=2c � k < 2j � bD=2c

and at the \edges" of the interval, they are dilations of certain special boundary wavelets:

 
[ ]
j;k = 2j=2 

#
k (2

jx� k); 0 � k < bD=2c;

'
[ ]

j;2j�k�1
= 2j=2 [

k(2
jx� 2j � k � 1); 0 � k < bD=2c:

The boundary-adjusted wavelets  #
k and  [

k are compactly supported and exhibit the same

degree of regularity as the corresponding wavelets on the line.

It is interesting to compare this interpolating wavelet transform with the orthogonal

transforms of Meyer (1991) and [CDJV]. It has a similar formal structure { all the basis
functions are dilations and translations of functions in a �nite list; functions in that list
are all built by boundary correcting the wavelets for the line.

3.1 Construction of the Basis

We now prove Theorem 3.1 by an extended discussion. Suppose we are given normalized
samples (�j;k = 2�j=2f(k=2j ) : 0 � k < 2j) only for lattice sites in the unit interval
[0; 1), and that 2j > 2D + 2 (\non-interacting boundaries"). The Extension operator Ej;D
of degree D generates an extrapolation of these samples to a bilateral in�nite sequence
( ~�j;k)k2Z which agrees with �j;k for 0 � k < 2j . The extrapolated samples ( ~�j;k : k < 0)

are �lled in by �tting a polynomial �#j of degree D to the leftmost D + 1 samples:

�#j (k2
�j) = f(k=2j ); 0 � k � D

and using this to extrapolate to k < 0:

~�j;k = 2�j=2�#j (k2
�j); k < 0:

Similarly, the missing samples ( ~�j;k : k � 2j) are obtained by �tting a separate polynomial

�[j of degree D to the rightmost D + 1 samples:

�[j(k2
�j) = f(k=2j); 2j � 1 �D � k � 2j � 1;

and using this to extrapolate to k � 2j:

~�j;k = 2�j=2�[j(k2
�j); k � 2j :

One then has data at every lattice site and can form the interpolate

~f =
1X

k=1

~�j;k'j;k: (3.1)

15



De�nition 3.2 Vj[0; 1] is the collection of (restrictions to [0,1] of) functions ~f de�ned by

(3.1), where ~� = Ej;D � (�j;k)2j�1k=0 .

This gives us a 2j-dimensional vector space of functions with two key properties. First,

the coe�cients arise by sampling:

�j;k = ~f(k2�j)=2j=2; 0 � k < 2j :

This property is simply inherited from the interpolating transform on R. Second:

�D � Vj[0; 1]

Indeed, if � is a polynomial of degree � D, then �#j = �[j = �. Hence the extrapolated

samples satisfy
~�j;k = 2�j=2�(k2�j); k 2 Z;

and so we may use the reproducing formula for the transform on R,

� = 2�j=2
1X

k=�1

�(k=2j)'j;k =
1X

k=�1

~�j;k'j;k

which exhibits � as an element of Vj[0; 1].
We now seek a representation of the �nite-dimensional space Vj [0; 1] involving �nite

sums. Each extrapolated coe�cient ~�j;k with k < 0 is a linear functional of the extrapo-
lating polynomial and hence of the left-end samples (�j;k : 0 � k � D). It follows that we

may de�ne extrapolation weights e#k;k0 such that

~�j;k =
DX

k0=0

e#k;k0�j;k0; k < 0:

Similarly, for k � 2j we have weights e[k;k0

~�j;k =
2j�1X

k0=2j�D�1

e[k;k0�j;k0 ; k � 2j :

Now de�ne boundary-wavelets

'
#
j;k0 = 'j;k0 + (

X
k<0

e
#
k;k0'j;k); 0 � k0 � D

and
'[j;k0 = 'j;k0 + (

X
k�2j

e[k;k0'j;k); 2j �D � 1 � k0 < 2j :

These sums are actually �nite because of the compact support of the fundamental wavelets.

Moreover, the new boundary wavelets are interpolating. To see this, note that the non-

boundary corrected 'j;k are interpolating, and the correction terms to 'j;k are sums of 'j;k0,

k0 62 f0; : : : ; 2j � 1g which vanish identically on the dyadic grid f0; 2�j ; : : : ; (2j � 1)=2jg.
We therefore have, by rearranging the sum (3.1)
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Lemma 3.3 Every f 2 Vj [0; 1] has the representation

~f =
DX
k=0

�j;k'
#
j;k +

2j�D�2X
k=D+1

�j;k'j;k

+
2j�1X

k=2j�D�1

�j;k'
[
j;k;

where again, the coe�cients

�j;k = 2�j=2f(k=2j):

Two crucial but trivial comments. First, the boundary wavelets are dilation-homogeneous:

'
#
j+`;k(t) = 2`=2'#

j;k(2
`t); 0 � k � D

'
#

j+`;2j+`�k = 2`=2'#
j;2j�k(2

`t); 0 � k � D:

This follows immediately from the observation that the edge weights e#k;k0 and e
[
k;k0 do not

depend on j.
Secondly, the boundary wavelets '#

j;k are compactly supported, with support width �
C 2�j ; indeed, the corresponding uncorrected 'j;k have this property; the sum of corrections
has a bounded number of terms each of which has this property.

To �nish up our analysis of Vj [0; 1] we record

'
[ ]
j;k =

8><
>:
'
#
j;k 0 � k � D

'j;k D < k < 2j �D � 1

'[j;k 2j �D � 1 � k < 2j

Our discussion so far proves all the properties of '
[ ]
j;k claimed in the theorem.

We now turn to the analysis of the detail spaces Wj[0; 1]. To de�ne these we �rst need
a key observation:

Lemma 3.4

Vj [0; 1] � Vj+1[0; 1]

Proof. The result amounts to the assertion that

P
[0;1]
j+1 f = f; f 2 Vj[0; 1]:

The key point is that for an f 2 Vj [0; 1], the edge polynomials at the next �ner scale agree:

�#j+1 = �#j ; �[j+1 = �[j: (3.2)

To see this, note that the edge polynomial �#j is de�ned by the property

f(k=2j) = �
#
j (k=2

j); 0 � k � D: (3.3)

17



However, when we use it to extend to samples at negative k, and then apply the Deslauriers-

Dubuc interpolation scheme to the extended samples to get halfway points, we get agree-

ment at halfway points as well:

f((k + 1=2)=2j ) = �
#
j ((k + 1=2)=2j ); 0 � k � (D � 1)=2: (3.4)

For example, f((0 + 1=2)=2j ) is produced by �tting a polynomial to samples (f(k=2j) :

(�D + 1)=2 � k � (D + 1)=2). But �
#
j passes through all D of these points, and is the

only polynomial that does so. Hence, when �tting a polynomial �j;0 to these points we get

�j;0 = �
#
j , and the Deslauriers-Dubuc interpolation rule f((0+1=2)=2j ) = �j;0((0+1=2)=2j )

gives (3.4). Combining (3.3) and (3.4) we conclude

f(k=2j+1) = �
#
j (k=2

j+1); 0 � k � D: (3.5)

But �#j+1 is de�ned by the property that it interpolates the points f(k=2j+1), 0 � k � D.
And only one polynomial can solve this interpolation. Hence (3.5) implies (3.2). 2

Now de�ne Q
[0;1]
j = P

[0;1]
j+1 �P [0;1]

j and setWj[0; 1] = Range(Q
[0;1]
j ). Because of the lemma

we have just proved, this is a 2j-dimensional function space.
We now seek an accessible representation of elements of Wj[0; 1]. De�ne ~�j;k by, if

0 � k < 2j ,

~�j;k = 2�j=2 � (f((k + 1

2
)=2j) � (P

[0;1]
j f)((k +

1

2
)=2j));

and 0 for other values of k. The sum
P1

k=�1
~�j;k'j;k+

P1
k=�1 ~�j;k j;k belongs to Vj+1(�1;1),

and so there is a sequence ( ��j+1;k)k for which

1X
k=�1

~�j;k'j;k +
1X

k=�1

~�j;k j;k =
1X

k=�1

��j+1;k'j+1;k:

We calculate that

��j+1;k =

8><
>:

2�(j+1)=2f(k2�j�1) k 2 Kj+1

2�(j+1)=2�
#
j (k2

�j�1) k < 0

2�(j+1)=2�[j(k2
�j�1) k � 2j+1

:

Indeed, for each k < 0 the D+1 lattice sites k0=2j nearest to (k+1=2)=2j have values ~�j;k0

which are reproduced exactly by �#j . Therefore, �tting a polynomial �j;k to those values

only reproduces the polynomial �#j .

Let, as before, ~�j+1;k denote the polynomial extension of the values with k 2 Kj+1.

Then for k < 0,
~�j+1;k � ��j+1;k = �

#
j+1(k2

�j�1) � �
#
j (k2

�j�1);

and similarly for k � 2j . Hence we may write

1X
k=�1

~�j;k'j;k +
2j�1X
k=0

~�j;k j;k +A#(t) +A[(t) =
1X

k=�1

~�j+1;k'j+1;k

where, for example,

A#(t) =
�1X

k=�1

(�#j+1(k2
�j�1)� �#j (k2

�j�1))'j+1;k(t):
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We analyze the A# term closely. The polynomials �#j (t) and �
#
j+1(t) necessarily agree

for values t = k=2j , 0 � k � (D + 1)=2. Hence the space of di�erence polynomials

�
#
j+1(t) � �

#
j (t) is bD=2c dimensional. A basis for this space is fp#j;kg, where p#j;k(t) is a

polynomial satisfying the interpolation conditions

p
#
j;k(t) =

(
1 t = (2k + 1)=2j+1;

0 t = k0=2j+1; 0 � k0 � D; k0 6= (2k + 1)
:

Then

A#(t) =
bD=2cX
k=0

�
#
j;kp

#
j;k(t)

where

�
#
j;k = f((k + 1=2)=2j )� �

#
j ((k + 1=2)=2j ):

We now de�ne boundary wavelets  #
j;k(t), for k = 0; : : : ; bD=2c � 1 (if D = 1 just skip

what follows).
 #
j;k(t) =  j;k(t) +

X
k0<0

p#j;k(k
0=2j+1)'j+1;k0(t):

These sums are actually �nite because the wavelets  are compactly supported. These
new functions vanish at all points of the dyadic grid fk0=2j+1g where k0 2 Kj+1 except at
k0 = 2k+1. Indeed, the uncorrected  j;k has this property, and the correction terms vanish
at all points of the dyadic grid k0 2 Kj . These new functions have support width � C2�j

{ because they are �nite sums of functions with such properties.

Because (pleasant surprise!) �#
j;k = ~�j;k, and similarly for �[j;k, we may group together

all terms containing �#
j;k and the corresponding ~�j;k and conclude that

2j�1X
k=0

~�j;k j;k +A#(t) +A[(t) =
bD=2c�1X
k=0

~�j;k 
#
j;k(t)

+
2j�bD=2c�1X
k=bD=2c

~�j;k j;k(t) +
2j�1X

k=2j�bD=2c

~�j;k 
[
j;k(t)

If we now de�ne

 
[ ]
j;k =

8><
>:
 
#
j;k 0 � k < bD=2c
 j;k bD=2c � k < 2j � bD=2c
 [
j;k 2j � bD=2c � k < 2j

;

the above discussion proves

Lemma 3.5 Every f 2 Vj+1[0; 1] can be written

f =
2j�1X
k=0

�j;k'
[ ]
j;k +

2j�1X
k=0

�j;k 
[ ]
j;k;

where

�j;k = 2�j=2f(k=2j ); k 2 Kj

�j;k = 2�j=2 �
�
f((k + 1=2)=2j )� (P

[0;1]
j f)((k + 1=2)=2j )

�
; k 2 Kj:
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As in the case of the transform on the line, we can iterate this decomposition, writing

every element of Vj1 [0; 1] as a sum of a term in Vj0 [0; 1], j0 < j1, and intervening terms

from Wj[0; 1], j0 � j < j1:

f =
X
k

�j0;k'
[ ]
j0;k

+
X

j0�j<j1

X
k

�j;k 
[ ]
j;k

More generally, if f is not in Vj1 , we have that f almost obeys this decomposition, with

an error f � Pj1f . Now if jjf � P
[0;1]
j f jj1 ! 0 as j ! 1, we can rigorously justify an

in�nite sum decomposition. But jjf � P
[0;1]
j f jj1 ! 0 if f is uniformly continuous. Hence

this decomposition holds for every f 2 C[0; 1].

3.2 Smoothness Classes on the Interval

The interpolating wavelet transform on the interval gives a characterization of Besov classes
on the interval.

Theorem 3.6 Let � denote the wavelet coe�cients for the interpolating wavelet transform
on the interval. Then

k�kb�p;q � k(�j0;�)k`p + (
X
j�j0

(2js(
2j�1X
k=0

j�j;kjp)1=p)q)1=q;

where s = � + 1=2 � 1=p, gives an equivalent norm for the Besov spaces B�
p;q[0; 1] where

1=p < � < min(R;D), p; q 2 (0;1].

The proof for the case of the line has been constructed so that it will continue to work
here, with only slight modi�cations. See the appendix.

Triebel-Lizorkin equivalence is also proved in the appendix.

Theorem 3.7 Let � denote the wavelet coe�cients for an interpolating wavelet transform

on the interval built from the Deslauriers-Dubuc fundamental wavelet FD. Then

k�kf�
p;q
� k(�j0;�)k`p + k(X

j�j0

2jsq
2j�1X
k=0

j�j;kjq�j;k)1=qkp

where s = � + 1=2, gives an equivalent norm for the Triebel spaces F �
p;q[0; 1] where 1=p <

� < min(R;D) and p; q 2 (1;1].

3.3 Fast Compression of Interpolating Expansions

This interpolating wavelet transform for the interval has a very simple algorithmic structure.

The calculation of (P
[0;1]
j f)((k+1=2)=2j ) requires only D+1 multiplications and additions.

The calculation of �j;k requires only D + 2. Moreover the multiplications involve rational

coe�cients with small denominators.

20



The interpolating transform for the interval gives a sparse representation of certain

functions { particularly so for piecewise polynomials: If f is a piecewise polynomial on

[0; 1], with � P pieces, each of degree D, sampled on a dyadic grid of n = 2j1 points, then

from those samples, we can calculate the wavelet coe�cients at scale j1�1 and each coarser

scale, and there are only C0+P � (D+1) � log2(n) nonzero wavelet coe�cients among them.

Since a piecewise polynomial has in general (D + 1) � P parameters, this behavior is, in a

natural sense, within a logarithmic factor of optimal.

Of course, general functions have many nonzero wavelet coe�cients. But often these

can be well approximated by a sparse sequence. Suppose that for we have the collection of

all interpolating wavelet coe�cients � and that we \sparsify" these as follows.

Let � > 0 denote a thresholding control parameter. De�ne gross-structure coe�cients

�
(�)
j0;k

= �j0;k, k 2 Kj0 , and coe�cients

�
(�)
j;k = �j;k � 1fj�j;kj>��2�j=2g; j � j0; k 2 Kj :

Hence, at each level j � j0, we set to zero coe�cients which are smaller in amplitude than
� � 2�j=2.

Suppose that f 2 B�
p;q[0; 1] for some � > 1=p. Then �(�) has �nitely many nonzero

terms. The series obtained by summing the wavelet series corresponding to �(�) produces
a reconstruction f (�); f (�) ! f in B�

p;q[0; 1] as �! 0.

The sparse representation f (�) has advantages over another �nite series, namely P
[0;1]
j f .

The slogan is that f (�) contains the terms which are important, while P
[0;1]
j f contains

all terms which might possibly be important. This can be seen in the case of piecewise
polynomials, where there are only order J �P nonzero wavelet coe�cients up to and including
level J of the wavelet expansion, but they are scattered around, with some present at each

resolution level. In order to perfectly reconstruct the piecewise polynomial on a grid of size
n = 2J points by a non-adaptive levelwise scheme P

[0;1]
j j0 � j � J we have to capture

all the levels where nonzero coe�cients occur (i.e. all the levels) and so we would use the

full representation P
[0;1]
J f which requires order 2J storage. In contrast f (�) uses only order

J � P storage, and this is within a logarithmic factor of optimal. For more general classes

of functions, we have the following result.

Theorem 3.8 Suppose f 2 B�
p;q[0; 1] with D > � > 1=p. Then we have

kf � f (�)k1 � � �
�
c0(�; p) + c1(�; p) log2(k�kb�p;q=�)

�
� > 0 (3.6)

while the number of nonzero terms

N(�) = #f(j; k) : �(�)
j;k 6= 0g

satis�es

N(�) � c2(�; p) � ��p � k�kpb�p;q : (3.7)

In words, f (�) is roughly � away from f ; and has roughly ��p nonzero coe�cients.
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For better insight, we rewrite the result in terms of n rather than �. If � > 1=p then,

for each � > 0 we can pick ~p < p so that � � � < 1=~p < �. Using k�kb�
~p;1

� k�kb�
p;q
, and

applying Theorem 3.8, we can de�ne a sequence �n so that N(�n) � n and so that

kf � f (�n)k1 � C(�; p; �; kfkB�
p;q[0;1]) � n�(���); n!1: (3.8)

This is near optimal in a certain minimax compression model. Let F be a library of

functions, any of which we would like to repesent e�ciently. Let Sn be the set of all

interpolating wavelet sums with at most n nonzero coe�cients (all possible positions of the

n nonzero coe�cients being allowed). The best we can hope to do, taking worst-case error

over F as a criterion, is the minimax error:

sup
f2F

inf
fn2Sn

kf � fnk1:

Suppose that our library of functions to be compressed is a Besov ball. In the appendix

we prove the following lower bound on the minimax error:

Lemma 3.9 Let F be the Besov ball of all functions f with B�
p;q[0; 1] norm bounded by B,

� > 1=p

sup
f2F

inf
fn2Sn

kf � fnk1 � C(�; p; q) �B � n�� (3.9)

Hence no essentially better rate of approximation than n�� is possible, by any method of
sparsifying the representation of f to n terms, no matter how nonlinear or computation-
ally intensive the scheme might be. The same type of lower bound can be developed for
sparsi�cation of other wavelet expansions, including orthogonal wavelets. Comparing (3.8)
to (3.9), we see that simple thresholding of interpolating coe�cients is nearly as good, in
a minimax sense, as some computationally more extravagant, perhaps yet to be invented,

sparsi�cation of orthogonal coe�cients.
How does f (�n) compare with PJf as an approximation scheme? For functions in

B�
p;q[0; 1] we have

kf � PJfk1 �
X
j�J

kQjfk1

�
X
j�J

k(�j;k)kk`12j=2 � C

� X
j�J

2�j(�+1=2�1=p)k�kb�
p;q
2j=2 � C

� 2�J(��1=p) � k�kb�
p;q
� C

Moreover there is a lower bound indicating that this upper bound is sharp, to within

constant factors. Now PJ has n = 2J nonzero terms, and so we have

kf � PJfk1 � C � kfkB�
p;q

[0;1] � n�(��1=p)

Except in the case p = 1 this rate is slower than the rate n�� nearly attained in (3.8).
Hence PJ has a slower minimax rate of approximation than f (�n) in general; it gives worse
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reconstructions for a given number of nonzero terms. This is a generalization of what we

saw already for approximations to piecewise polynomials. For an example of a function

where the two methods di�er, we need an f 2 B�
p;q[0; 1] but f 62 B�

1;1[0; 1]. An example

is the cusp function exp(�jx� 1=2j) which is piecewise C1 but which does not belong to

C1+�. Except for a constant number of terms at each resolution level which \feel" the cusp,

and which decay like 2�j(3=2), the wavelet coe�cients decay like 2�j(1=2+D). The function f

is in B�
p;q[0; 1] whenever � � 1=p < 1, and so, the rate of approximation by f (�n) is at least

n�D+�, � > 0. In contrast, f is in B�
1;1[0; 1] only if � � 1, and the rate of approximation

by PJf is only n�1. Roughly speaking, the di�erence between the schemes is that f (�n)

adaptively spends its budget of n terms predominantly near the cusp, while PJf uses its n

terms in a non-adaptive way.

Optimal results for minimax compression were obtained by DeVore, Jawerth, and Lucier

(1992), who developed quasi-interpolating wavelet expansions with sparsi�cation schemes

giving functions fn with n nonzero components and

kf � fnk1 � C(�; p) � kfkB�
p;p[0;1]

� n��:

The method of DeVore, Jawerth, and Lucier is more complicated than simple threshold-

ing; in particular, it is not based on applying thresholds in a completely parallel fashion.
Whether a certain coe�cient is set to zero by their method depends on what happens to
as many as O(log(n)) other coe�cients. On the other hand, the reconstructions they give
are very nice.

Remark: although the minimax compression model provides theoretical motivation for

the use of simple thresholding schemes, one can easily question the choice of Besov balls F
as models for empirical data. These balls model certain properties of interest, but actual
images contain spatial correlations and inter-level correlations which are nowhere captured
by the Besov formalism. Compression schemes which exploit correlations between resolu-
tion levels and spatial locations might turn out to give dramatically better reconstructions
than simple thresholding. Our aim here is only to point out that interpolating wavelet

transforms are equally as amenable to simple thresholding as orthogonal wavelet trans-

forms.
Another interpretation of compression is uniform quantization. We de�ne a quantum

q > 0 and obtain q-quantized coe�cients �fqg via

�
fqg
j;k = qj �Round(�j;k=qj)

where qj = q � 2�j=2 and so on. The arguments used to study thresholding will also show

that, if f has regularity, the bulk of these coe�cients are zero, and the reconstruction ffqg

is near-optimal in terms of minimax closeness as a function of number of bits used.
Such a quantization procedure, while having near-optimal L1 reconstruction errors, is

completely parallelizable, meaning that each wavelet coe�cient and its quantization may

calculated independently of all others. The whole procedure may be calculated in D + 3

parallel arithmetic operations. Moreover, the arithmetic required is all �xed-point integer

arithmetic.
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4 A Hybrid Transform

We now construct a hybrid transform, half-way between an orthonormal wavelets basis and

an interpolating basis.

4.1 Hybrid Wavelets

Let �'j;k and � j;k denote the wavelets of compact support associated with a pyramidal

�ltering scheme based on quadrature mirror �lters of �nite length. Suppose that these

wavelets have C
�R regularity and that the � are orthogonal to all polynomials of degree �D.

De�nition 4.1 We say that the interpolating wavelet ' is linked to the orthogonal wavelet

�' if ' is the autocorrelation ' = �'(��) ? �'(�) of �'.

Below we always assume that our interpolating wavelets are linked to the orthogonal
wavelets. As our orthogonal wavelets are Daubechies wavelets we are therefore restricting
ourselves to Deslauriers-Dubuc interpolating wavelets. And also to D � �D, R � �R.

We now construct hybrid wavelets \in between" these two particular systems. Let j1 be
a �xed integer, and consider the normalized samples

�j1;k = 2�j1=2f(k=2j1):

Now consider applying the pyramidal algorithm Uj0;j1 to (�j1;k) with quadrature mirror
�lters of compact support corresponding to the wavelets �'. This results in a �nite collection

of in�nite sequences
~� =

�
( ~�j0;�); (~�j0;�); : : : ; (~�j0+1;�)

�
obtained as follows. There are orthogonal transformations H;L : `2(Z) ! `2(2Z) which
consist of convolution by �lters of �nite length composed with a factor of two downsampling.
Applying these gives

(~�j;�) = H � Lj�j1�1 � (�j1;�); j0 � j < j1;

( ~�j0;�) = Lj0�j1 � (�j1;�):
These coe�cients, which simply arise from �ltering normalized samples, are the coef-

�cients of f in an expansion with respect to modi�ed functions ~'j0;k,
~ j;k j0 � j < j1,

de�ned as follows. Let �(j0;k
0) be the sequence

(( ~�j0;�); (~�j0;�); : : :)

with all entries zero, except ~�j0;k0 = 1. Then de�ne the coe�cient sequences (u
(j0;k

0)
k ) by

(Uj0;j1)
T � �(j0;k0) = (u

(j0;k
0)

k )k2Z:

Because our �lters are of compact support, u(j0;k
0) has only �nitely many nonzero terms.

De�ne

~'j0;k0 =
X
k2Z

u
(j0;k

0)
k 'j1;k: (4.1)
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These wavelets are �nite linear combinations of interpolating wavelets at �ner scales. Sim-

ilarly, if j > j1, we can construct vectors (u
(j;k0)
k )k2Z and de�ne

~ j;k0 =
X
k2Z

u
(j;k0)
k 'j1;k: (4.2)

Because of the orthogonality of Uj0;j1, and the interpolating property of the 'j1;k, these

new functions are orthonormal with respect to the sampling inner product hf; gij1 =P
k2Z f(k=2

j1 )g(k=2j1).

Complete this collection of functions to j � j1 using the interpolating wavelets:

~ j;k =  j;k; j � j1;

~�j;k = �j;k; j � j1:

Theorem 4.2 Let f 2 C0(R). Then

f =
1X

k=�1

~�j0;k ~'j0;k +
X
j�j0

X
k

~�j;k ~ j;k

in the sense of uniform convergence of �nite partial sums, j � J , jkj � K, J;K !1.

Proof. This is just a rearrangement of the identity in Theorem 2.6,

f =
X
k

�j0;k'j0;k +
X
j�j0

X
k

�j;k j;k; f 2 C0(R);

by �nite linear combinations. 2
Wemake some simple remarks. First, let ~Vj0 denote the collection of sums

P1
k=�1

~�j0;k ~'j0;k
where the sequence ~�j0;k is of at-most polynomial growth. Then

�min(D; �D) � ~Vj0 :

Second, the functions ~'j;k and ~ j;k are not dilations and translations of a single pair of

functions; instead the functions di�er from one resolution level j to the next. To make this

precise, let �j;kf = 2�j=2f(2�j(x+k)) be the standardization operator, so that, for example
�j;k'j;k = ' for each j and k. Then �j;k ~ j;k is a function which, in general, depends on j
but not on k. In fact it is a function ~ [`], ` = j � j1. Similarly �j0;k ~'j0;k is a function ~'[`].

At one limit, ` = 0, ~ [`] and ~'[`] are the interpolating wavelets. At the other limit, `!1
they are orthogonal wavelets:

k ~ [`] � � k1 ! 0; `!1; (4.3)

and
k ~'[`] � �'k1 ! 0; `!1: (4.4)

Indeed, Daubechies (1988, section 3.B) discusses a Cascade algorithm in which one

iteratively applies a two-scale �ltering operator starting from a \tent" function and proves

that the result converges in L1 to a limit, which with the coe�cient set-up assumed here
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must be the compactly supported orthogonal scaling function. The tent function is of

course the Schauder interpolating wavelet.

Our functions ~'[`] and ~ [`] are the result of running the Cascade algorithm ` times start-

ing from regular interpolating wavelets. A modi�cation of Daubechies' proof of convergence

of the cascade algorithm would show that (4.3)-(4.4) hold. However, our linking assump-

tion, and Lemma 4.3 below furnish immediately, without any honest work, the convergence

(4.3)-(4.4) as well as convergence in many stronger norms.

Third, as the functions ~'j0;k and ~ j;k are �nite linear combinations of the interpolat-

ing wavelets, they are all R-regular. However due to the asymptotic agreement with the

orthogonal wavelets, at best, we can hope for results saying that

�j;k ~'j;k 2 Cmin(R; �R)

uniformly in j; k. Establishing such bounds in a general situation, i.e. without linking,

would be quite tedious since one must study the regularity, uniformly in ` > 0, of the
functions ~'[`], and ~ [`]. The customary way is perhaps to adapt the methods of Daubechies
(1988) and Daubechies and Lagarias(1991), to study the decay of such functions in the

Fourier domain, where they have product representations:

'̂[`](�) = �`
j=1 �m0(2

�j�)�1
j=`+1m0(2

�j�): (4.5)

Here �m0 and m0 are the `two-scale' symbols of the orthogonal wavelet system and of
the interpolating wavelet system, respectively. However, to establish quantitative bounds,
uniform in `, for general choices of such two-scale symbols, seems challenging.

The special choice of the interpolating wavelets we have made above, linking them to
the orthogonal wavelets of compact support, gives an easy proof of the properties of the

hybrid wavelets ~'[`], uniformly in `. Our assumption links the di�erent two-scale symbols
by

j �m0j2 = m0; (4.6)

so, comparing with (4.5), we have (with z� the complex conjugate of z)

~̂'
[`]
(�) = �`

j=1 �m0(2
�j�)�1

j=`+1j �m0(2
�j�)j2

= �1
j=1 �m0(2

�j�)�1
j=`+1 �m

�
0(2

�j�)

= �̂'(�) � �̂'�(2�`�):
This proves

Lemma 4.3 Let the interpolating wavelet ' be linked to the orthogonal wavelet �'. Then

the hybrid wavelet ~'[`] is the convolution of the orthogonal wavelet with an approximate

identity manufactured from the orthogonal wavelet:

~'[`] = K` ? �';

where

(K`)(t) = 2` � �'(�2`t):
Similarly,

~ [`] = K`+1 ? � :
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Uniform estimates of regularity and localization now follow by inspection:

Corollary 4.4 With the interpolating wavelet linked to the orthogonal wavelet of compact

support, the hybrid wavelets satisfy the uniform support bounds

supp( ~'[`]) � [�B;B]; supp( ~ [`]) � [�B;B]; ` > 0

for a constant B independent of ` > 0. The hybrid wavelets satisfy the uniform smoothness

bounds

k d
m

dtm
~'[`]k1 � A; 0 � m � �R; ` > 0;

k d
m

dtm
~ [`]k1 � A; 0 � m � �R; ` > 0:

4.2 Smoothness Characterization

Our assumptions linking the orthogonal wavelet and the interpolating wavelet lead easily
to characterization theorems.

Theorem 4.5 Build the hybrid transform for C0(R) from an interpolating wavelet ' linked
to an orthogonal wavelet �' of regularity �R and polynomial span �D. Let f 2 B�

p;q(R),
min( �D; �R) > � > 1=p, p; q 2 (0;1]. Then

kfkB�
p;q
� k~�kb�

p;q
;

with constants independent of j1 � j0 > 0.

As before, this result has the consequence that the convergence of the wavelet recon-
struction is unconditional for functions f belonging to B�

p;q with � > 1=p { it does not
depend on the order in which the terms are summed.

Theorem 4.6 Build the hybrid transform for C0(R) from compactly supported ( �R; �D)-
orthogonal wavelets, using their autocorrelations as the interpolating wavelets. Letmin( �D; �R) >

� > 1=p, p; q 2 (1;1]. Then
kfkF�

p;q
� k~�kf�

p;q
;

with constants independent of j1 � j0 > 0.

4.3 Hybrid Transform and Special Interpolation

The hybrid transform gives a new interpretation of the operation of pyramid �ltering ap-

plied to samples (2�j1=2f(k=2j1)). The blind hope would be, since the �ltering is the �ltering
associated with orthogonal wavelets of compact support, that the partial reconstruction

�f =
X
k

~�j0;k �'j0;k +
X

j0�j<j1

~�j;k � j;k
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in some sense reconstructs f . However, if we sample �f and calculate its coe�cients, we

don't get back the coe�cients we started with: the method is not self-consistent. The

alternative reconstruction

~f =
X
k

~�j0;k ~'j0;k +
X

j0�j<j1

~�j;k ~ j;k

has the interpolation property

~f (k=2j1) = f(k=2j1); k 2 Z;

so it is self-consistent.

Because of the special assumption linking our interpolating wavelets to orthogonal ones,

there is a close connection between the naive reconstruction and the improved reconstruc-

tion. Indeed, by Lemma 4.3
~f = Kj1 ?

�f :

Simply smoothing �f on the same scale as the sampling results in an overall procedure which
interpolates f at the sampling grid.

5 Hybrid Transform on the Interval

Let n = 2j1 and (Snf) be the normalized samples of f at k=n 0 � k < n, (normed by
n�1=2). Let �(n) be the result of �ltering these samples via the �nite, boundary corrected
algorithm of [CDJV]. This transforms the n samples to a vector of n empirical wavelet

coe�cients
~�(n) =

�
( ~�j0;�); (~�j0;�); (~�j0+1;�); (~�j1�1;�)

�
:

We may interpret these as the �rst n coe�cients of f in a hybrid expansion. In a fashion

similar to (4.1), we obtain coe�cients u
(j0;k

0)
k via

(u
(j0;k

0)
k )2

j1�1
k=0 = P�1

D � (Uj0;j1)
T � �(j0;k)

where PD is the pre-conditioning operator and Uj0;j1 is the boundary-adjusted pyramid
operator de�ned in [CDJV]. This lets us de�ne

~'
[ ]
j0;k0

=
2j�1X
k=0

u
(j0;k0)
k '

[ ]
j1;k

Similarly for j0 � j < j1 and 0 � k0 < 2j

~ 
[ ]
j;k0 =

2j�1X
k=0

u
(j;k0)
k '

[ ]
j1;k
:

De�ne now ~�j;k and ~ j;k for j � j1 by

~�
[ ]
j;k = �j;k j � j1; k 2 Kj ;

~ 
[ ]
j;k =  

[ ]
j;k j � j1; k 2 Kj :

Arguing exactly as in earlier sections gives the following result. We omit the proof.
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Theorem 5.1 Let f 2 C[0; 1]. Then

f =
2j�1X
k=0

~�j0;k ~'
[ ]
j0;k

+
X
j�j0

X
k2Kj

~�j;k ~ 
[ ]
j;k

with uniform convergence of �nite partial sums:

kf �
X

k2Kj0

~�j0;k ~'
[ ]
j0;k

+
X

j0�j�J

X
k2Kj

~�j;k ~ 
[ ]
j;kk1 ! 0; J !1:

The coe�cients ~�j0;k and ~�j;k, j < j1, can be evaluated by applying pre-conditioned pyramid

�ltering to the samples (f(k2�j1 ))2
j1�1
k=0 .

To complete our results we have smoothness characterizations. The proof is discussed
in the appendix.

Theorem 5.2 Let 1
p
< � < min( �R; �D) and p; q;2 (0;1]. De�ne

~� = ((~�j0;k)k2Kj0
; (~�j0;k)k2Kj0

; : : : ; (~�j1;�)k2Kj1
; : : :):

The norm

k~�kb�p;q � k( ~�j0;�)k`p + (
X
j�j0

(2js(
2j�1X
k=0

j~�j;kjp)1=p)q)1=q

is an equivalent norm for B�
p;q[0; 1], with constants of equivalency independent of j1 > j0.

Theorem 5.3 Let 1
p
< � < min( �R; �D) and p; q;2 (1;1]. Then

kfkF�
p;q

[0;1] � k�kf�p;q
with constants of equivalency independent of j1 > j0.

Together theorems 5.2 and 5.3 furnish [ET1]-[ET5] of the introduction and complete
the proof of all main results.

6 Discussion

6.1 The Critical Case: � = 1=p

Interpolating wavelet transforms are not suited for dealing with Besov and Triebel spaces

if � = 1=p. First, members of B�
p;q[0; 1] and F

�
p;q[0; 1] in the critical case are guaranteed to

be bounded only if q � 1. For example, log(x) 2 B1=p
p;1[0; 1] for all p > 0. Hence, sampling

of functions in the critical spaces with q > 1 doesn't really make sense. In particular, no
general inequality of the form

k�kb�p;q � C � kfkB�
p;q

(6.1)
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with C independent of f . Indeed, the presence of an in�nite value of f(t) at a single binary

rational makes the sequence space norm in�nite while the function space norm is �nite.

Second, even in the case q � 1 where samples \exist", no general inequality (6.1) is

possible. The homogeneous space _B1=p
p;q is invariant under dilation, so the right side of

(6.1) is bounded under the rescaling f(a(t� t0)), a > 1. Now let f be a smooth function

supported in [0; 1] with f(0) = 1. Set f [j1] = f(2j1 t). Then kf [j1]kB�
p;q[0;1] is bounded

as j1 ! 1. On the other hand, we get f [j1](2�j�1) = 0 for j0 � j < j1. Also, there

is a unique polynomial PD interpolating the sequence (1; 0; : : : ; 0) at (0; 1; 2; : : : ;D), and

�j;0(�) = PD(2
�j �) for j0 < j < j1. Hence �j;0 = �PD(1=2) � 2�j=2 for j0 < j < j1. We

conclude that k�[j1]kb�
p;q
� jPD(1=2)j(j1 � j0 � 1)1=q, which is unbounded as j1 !1.

For discussion of the critical case � = 1=p, 1 � p <1, it is therefore natural to abandon

the Besov and Triebel scales. Consider instead the `p variation spaces Vp of Peetre (1976).

These have seminorm

kfkVp = sup
ti<ti+1

k(f(ti+1)� f(ti))ikp

where the sup is over all partitions of the line. Of course, the case p = 1 is just the
bounded variation seminorm, and the case p = 2 is Wiener's quadratic variation. These
are all spaces of bounded functions where functions have left-hand and right-hand limits.

Hence sampling and interpolation still make sense (if only just barely). Peetre points out
that

_B
1=p
p;1 � Vp � _B1=p

p;1; p 2 [1;1);

where dots denote homogeneous Besov spaces. Hence Vp belongs to the critical case � =
1=p.

Now for nice orthogonal wavelet bases we have

c � k��k_b1=pp;1

� kfkVp � Ck��k_b1=p
p;1

:

For interpolating wavelets satisfying [IW1]-[IW6], we have, in an `p variant of Lemma 2.4,
that k(�j;k)kk`p � C � 2�j=2kfkVp. Hence, the interpolating wavelet coe�cients satisfy

k�k_b1=pp;1

� C � kfkVp:

Similarly, we get

k�k_b1=p
p;1

� c � kfkVp:
These inequalities parallel the orthogonal case, and are essentially the best we can expect.

6.2 Compression in the Critical Case

Real digital imagery generally behaves, along individual scan lines, as samples of a bounded

function with discontinuities. Because our discussion to date emphasizes continuous func-
tions, considerations of credibility demand some discussion of what happens when discon-

tinuities are present. The spaces Vp include bounded functions with discontinuities and

minimax compression over such spaces may be taken as a model for problems of compress-

ing real images.
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We suppose that a vector of samples Sj1f = (f(k=2j1 ))k2Kj1
is available, and that the

underlying function belongs to Vp. We apply the thresholding scheme of section 3.3 to the

wavelet coe�cients of these samples, i.e. to the wavelet coe�cients at scales j0 � j < j1.

We get the reconstruction

f
(�)
j1

=
X
k

�j0;k'
[ ]
j0;k

+
j1�1X
j=j0

�
(�)
j;k 

[ ]
j;k

We evaluate error in compressing the vector Sj1f by the `1 norm of the di�erence between

original samples and the samples of the reconstruction (f
(�)
j1
(k=2j1)).

Slight adaptations of the reasoning behind Theorem 3.8 give

Lemma 6.1 Suppose f 2 Vp and that the wavelet transform sati�es D � 1 � 1=p. Then

with constants c1; c2 depending only on the wavelet chosen,

kSj1f � f
(�)
j1
k`1 � � � j1 � c1; � > 0 (6.2)

while the number of nonzero terms N(�) = #f(j; k) : �(�)
j;k 6= 0g satis�es

N(�) � c2 � j1 � ��p � kfkpVp: (6.3)

As a particular example, we let p = 1, and we de�ne a sequence �n = c2 � j1 � kfkV1 � 1
n

so that N(�n) � n and we get

kSj1f � f
(�n)
j1

k`1 � n�1 � c2 � c1 � j21 � kfkV1; n!1:

This behavior is optimal to within logarithmic terms. Indeed since we have the estimate

k(�j;k)kk1 � C � 2�j=2 � kfkV1
the argument of Lemma 3.9 shows that the best reconstruction fn based on summing n
wavelet terms satis�es

sup
f :kfkV1�1

kSj1f � fnk`1 � c � kfkV1=n; n � n0

Compare this with the discussion of Kahane's Theorem in (DeVore, 1989).

6.3 Alternate Interpolating Bases

Our construction of an interpolating basis for the interval is built to resemble, as nearly as

possible, the construction of orthogonal wavelet bases for the interval as in Meyer (1991)
and [CDJV]. It is built from translates and dilates of a �nite collection of functions, at

the \heart" of which are functions from the transform on the real line. However, this is
just one way to construct interpolants. There is a dyadic construction of an interpolating

spline Schauder basis of C[0; 1] by Domsta (1976) for which function space characterizations

have been proven; but Domsta's basis does not have dilation and translation homogeneity.
Compare also the work of Schonefeld (1972) and Subbotin (1972).
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6.4 Related Wavelet Transforms

The concept of interpolating transform is related to a great deal of existing wavelet work,

which we attempt to mention here in alphabetical order.

Aldroubi-Unser. Aldroubi and Unser (1992) develop non-orthogonal interpolating scal-

ing functions, and mention the associated wavelets. Their approach is based on a signal

processing/�ltering point of view, emphasizing interpolating splines (which are not com-

pactly supported). They claim, in passing, that the wavelet (as well as the scaling function)

is also interpolating. It is not clear, from their �ltering representation, whether their wavelet

satis�es  (x) = '(2(x� 1=2)), so I am unable to say that they are actually performing the

interpolating transform as de�ned here. They give examples of \cardinal spline wavelet"

decompositions of images, whose captions suggest they may be instances of interpolating

transforms.

Saito-Beylkin. The interpolating wavelet transform is closely related to the Saito-
Beylkin (1992) transform, which uses wavelets derived fromDeslauriers-Dubuc interpolants,
but which does not decimate by factors of 2 after �ltering. The aim of Saitoh and Beylkin
is not to construct an interpolating transform, but to avoid phase shifts in edge detection.
Also, the two transforms di�er in their choice of  . Saito and Beylkin use the autocorre-

lation of an orthogonal wavelet � , while we do not.
Cohen-Daubechies-Feauveau. Interpolating wavelet transforms represent a degenerate

instance of the biorthogonal wavelet transforms of Cohen, Daubechies, Feauveau (1990), in
which one wavelet of the biorthogonal pair is no longer a function, but a linear combination
of Dirac masses.

DeVore-Popov. The interpolating wavelet transform is also closely related to the DeVore-
Popov (1988) transform, a nonlinear transform based on spline quasi-interpolants which is
useful for characterizing Besov spaces on the interval. A number of useful technical tools
such as those underlying e.g. Lemma 7.2 may be found in that work.

DeVore-Jawerth-Lucier. DeVore, Jawerth, and Lucier (1990) construct a 2-dimensional

wavelet expansion based on quasi-interpolating box-spline wavelets. Although this expan-
sion is not an interpolating transform, it has a similar domain of applicability (i.e. to
� > d=p in dimension d). The article gives very nice examples where such a transform
may be used to compress smooth nonparametric surfaces. The compression results of our

section 3.3 are similar in spirit to those of DeVore, Jawerth, and Lucier, who use, as we have

said, something besides simple thresholding in order to compress expansions optimally.

Lemari�e-Malgouyres. P.G. Lemari�e and G. Malgouyres (1989) construct orthogonal

scaling functions which are also interpolating. Such scaling functions are necessarily of
non-compact support (Daubechies,1992, Page 211). However, even if we had used such

wavelets, the interpolating transform de�ned above would not reduce to the orthogonal
transform. This is because in our de�nition,  = '(2(x � 1=2)) is not orthogonal to V�1
etc.

Sickel. A particular scaling function which is both interpolating and orthogonal to

translates is the cardinal sine, sin(�x)=(�x). (It is not of rapid decay). Work characterizing

Besov and Triebel-Lizorkin spaces on the line, � > 1=p, in terms of samples and using
properties of the cardinal series was given by Sickel (1992). Although Sickel's paper did not

use the language of wavelets it might, in retrospect, be interpreted as saying that function

32



space characterizations may be carried out even using wavelets without good decay.

6.5 Variations

Normalization. Much of the \accounting" work with L2-normalized interpolating wavlelets

2j=2 (2jx � k) is counterintuitive. We have used it in this article only to emphasize the

formal similarity with the orthogonal wavelet transform. It makes perfectly good sense to

use instead L1-normalization  (2jx� k).

Periodization. The periodized wavelet for [0; 2�]

'�j;k(!) =
X
k0

'j;k(!=2� + 2jk0)

is well-de�ned (assuming rapid decay of ') and is interpolating. The corresponding trans-

form characterizes Besov and Triebel spaces on the circle in the range � > 1=p.
Higher Dimensions. When re�ning a dyadic grid in dimension d > 1, each scale halving

produces 2d � 1 new mesh points per old mesh point. Hence there need to be 2d � 1  
functions, which could be simply

 [�] = 2jd=2�(2jx� (k + �=2))

for � a nonzero binary d-vector, and ' an interpolating wavelet. Then as long as � > d=p,
we get that the interpolating coe�cients give equivalent norms to Besov and Triebel spaces.

Interpolating Spline Wavelets for [0; 1]. We have not so far described the interpolating
spline wavelets for [0; 1]. We de�ne Vj[0; 1] as the set of piecewise polynomials of degree D

with knots at k=2j for k = dD=2e; :::; 2j�dD=2e�1. Then Vj [0; 1] contains all polynomials
of degree D, and satis�es the nesting condition Vj [0; 1] � Vj+1[0; 1]. A basis for Vj [0; 1] is

given by those splines '
[ ]
j;k satisfying Kronecker interpolation conditions. Unfortunately,

this basis does not consist of functions related to each other by dilation and translation.

So it is not really a wavelet basis.
There is, however, a connection between interpolating splines on the interval and in-

terpolating spline wavelets on the line. It is based on the same principle of extension
and folding that we exploited in extending the wavelet transforms for Deslauriers-Dubuc

wavelets on the line to the interval.

Lemma 6.2 Let ' be a fundamental spline of degree D, D an odd integer greater than 1.

Given (�j;k)
2j�1
k=0 , there is a unique extension by a polynomial of degree D,

~�j;k = 2�j=2 � �[ ](k=2j); k 62 Kj

to a sequence ( ~�j;k)k2Z which ensures that the in�nite sum

~f =
X
k2Z

~�j;k'j;k

satis�es
~f j[0;1] 2 Vj[0; 1]
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This lemma establishes a correspondence between the interpolating spline spaces on the

interval and the interpolating spline spaces on the line. It follows from this lemma that

the interpolating splines '
[ ]
j;k are corrected versions of the interpolating splines 'j;k for the

line:

'
[ ]
j;k = 'j;k +

X
k0 62Kj

�
[ ]
j;k(k

0=2j)'j;k0; k 2 Kj :

Here the correction terms vanish on the dyadic grid Kj=2
j , and are exponentially decaying

with distance from 0 and 1.

7 Appendix: Proofs

7.1 Proofs for Section 2.2

To prove (2.7), it is enough to do so at scale j = 0, since it follows for other j by a dilation.
Let x; h 2 [0; 1]. We have, using summation by parts,

(P0f)(x+ h)� (P0f)(x) =
X
k

(�0;k+1 � �0;k)�
(h)(x� k);

where

�(h)(x) =
�1X

`=�1

('(x+ h+ `) � '(x+ `));

and the summation by parts is justi�ed by the rapid decay of '. Hence

j(P0f)(x+ h)� (P0f)(x)j � k(�0;k+1 � �0;k)k`1 �
X
k

j�(h)(x� k)j:

Now by the rapid decay of ', there is a �nite constant C� with

X
k

j�(h)(x� k)j � C�; x; h 2 [0; 1]:

Hence

!(1; P0f) � C� � k(�0;k+1 � �0;k)kk1
= C� � k(f(k + 1)� f(k))kk1
� C� � !(1; f):

This is (2.7) at scale j = 0.

7.2 Proof of Besov Equivalence

Here is the idea. Consider the orthogonal wavelet transform based on Daubechies wavelets
� j;k of compact support, orthogonal to polynomials of degree �D, and of regularity �R. Meyer

(1990) has already proved that the orthogonal wavelet transform based on these wavelets
of characterizes Besov space B�

p;q, � < min( �R; �D), p; q 2 [1;1].
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One way of stating this characterization is as follows. Let �'j;k denote the orthogonal

scaling function for the Daubechies wavelets, and let �Pj denote the orthogonal projection

operator �Pjf =
P ��j;k �'j;k where ��j;k =

R
f(t) �'j;k(t)dt. �Pjf is orthogonal projection of f

on �Vj, say. Membership in Besov space can be measured by the rate at which �Pjf ! f

in Lp. We will show that, if � > 1=p, the non-orthogonal interpolating wavelet transform

derives from a linear approximation scheme (Pjf) which converges to f 2 B�
p;q at the same

rate as the linear approximation scheme ( �Pjf) generated from the corresponding wavelet

analysis. This equivalence of approximation power implies the result.

Now the formal proof. We assume to begin with that p; q 2 [1;1]. After we give the

formal argument we will describe modi�cations to cover p; q 2 (0;1].

It is known that Besov space B�
p;q(R) is normed as follows (Meyer, 1990, Vol. I, Chapter

2, pages 50-51). De�ne (�ej)
1
j=j0

by

kf � �PjfkLp = �ej2
�j�; j � j0

and set
kfk �B�

p;q
= k �Pj0fkLp + k(�ej)k`q :

Then kfk �B�
p;q

is an equivalent norm for B�
p;q(R). We will �rst show that this norm is

equivalent, if � > 1=p, to a similar norm based on the (non-orthogonal) interpolating
approximation Pj . De�ne (ej)j�j0 by

kf � Pjfkp = ej2
�j�; j � j0;

and set
kfkB�

p;q
= kPj0fkp + k(ej)k`q :

The equivalence of these norms depends on properties of the projection norms

kPjk�V
j0
� supfkPjfkp : f 2 �Vj0 ; kfkp = 1g;

and

kI � Pjk�V
j0
� supfkf � Pjfkp : f 2 �Vj0 ; kfkp = 1g;

and their counterparts with �Pj and Vj.
The �rst property: although Pj is not a nicely bounded operator on general Lp spaces,

Pj is bounded on �V 0
j even if j0 � j.

Lemma 7.1

kPjk�Vj+` � C � 2`=p; ` > 0 (7.4)

k �Pjkp � C;8j (7.5)

This Lemma is proved below.

The second main result on projections Pj , �Pj concerns the fact that, if j0 � j, then
Pj is a near-identity on �V 0

j . The error in this approximation depends on the degree of

smoothness of elements of �Vj and on the degree of polynomial span of Vj.
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Lemma 7.2

kI � Pjk�Vj�` � C � 2�`min(D; �R); ` > 0 (7.6)

kI � �PjkVj�` � C � 2�`min(R; �D); ` > 0 (7.7)

The lemma will also be proved below.

We assemble these facts to bound the behavior of (ej) in terms of (�ej). Develop the

telescoping sum,

(I � Pj)f = (I � Pj)( �Pj0f +
X
j0�j0

�Qj0f)

giving

k(I � Pj)fkp � k(I � Pj) �Pj0fkp +
X
j0�j0

k(I � Pj) �Qj0fkp

Now
k(I � Pj) �Pj0fkp � kI � Pjk�Vj0k �Pj0fkp:

Applying Lemma 7.2, we have kI � Pjk�Vj0 � C � 2�(j�j0)min(D; �R). Hence, de�ning ~ej =

C � 2�(j�j0)min(D; �R)kfk �B�
pq

k(I � Pj) �Pj0fkp � ~ej; j � j0:

Because �Wj0 � �Vj0+1

k(I � Pj) �Qj0fkp � k(I � Pj)k�V
j0+1

k �Qj0fkp

and because �Qj0f = (f � �Pj+1f) � (f � �Pj+1f), the triangle inequality gives

k �Qj0fkp � 2�j
0�(�ej0 + �ej0+1):

Therefore we can writeX
j0�j0

k(I � Pj) �Qj0fkp �
X
j0�j0

H(j; j 0)(�ej0 + �ej0+1); j � j0

where
H(j; j0) = C � 2�j0�kI � Pjk�V

j0
:

Combining these observations, we have

ej � ~ej +
X
j0

H(j; j 0)(�ej0 + �ej0+1); j � j0: (7.8)

By Lemmas 7.1-7.2,

H(j; j 0) � C � 2�jj�j0 j��;
where � = min(min(D; �R) � �; � � 1=p). The assumption 1=p < � < min(D; �R) makes

� > 0 so that H decays exponentially fast away from the diagonal and furnishes a bounded
linear transformation from `q to `q for every q 2 [1;1]. Also as � < min(D; �R),

k~ek`q � C � kfk �B�
pq
� k(2�(j�j0)(min(D; �R)��))j�j0k`q = C � kfk �B�

pq
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and so,

kek`q � C � kfk �B�
pq
+ 2 � kHkqkfk �B�

pq
:

A similar argument gives

kPj0fkp � C � kPj0k�Vj0 � k �Pj0fkp + C
X
j0�j0

kPj0k�Vj0 � (�ej0 + �ej0+1)

� C � kPj0fkp + C
X
j0�j0

2�(j
0�j0)�(�ej0 + �ej0+1) � C � kfkB�

p;q

and so, by (7.8),

kfkB�
pq
� C � kfk �B�

pq
:

To get an inequality in the reverse direction, we systematically reverse the roles of barred

and unbarred quantities in the above argument, and get equivalence of the two norms.
Now we show that

k�kb�
pq
= k(�j0;�)k`p + (

X
j�j0

(2js(
X j�j;kjp)1=p)q)1=q

is an equivalent norm to kfkB�
p;q
.

De�ne Qjf = Pj+1f � Pjf , the non-orthogonal projection on Wj. By the triangle
inequality, kQjfkLp � (ej+1 + ej) � 2�j� .

We need the fact that the wavelet coe�cients of an f 2 Vj have an `p-norm comparable
to the Lp norm of f . This is, of course, standard in the study of orthonormal wavelets

(compare Meyer (1990, page 31, Lemme 8)) and in spline analysis (DeVore and Popov,
1988). It is a corollary of Lemmas 7.6-7.7 below.

Lemma 7.3 For (R;D)-interpolating wavelets we have the inequalities

k
X
k

�j;k j;kkLp � k(�j;�)k`p � 2j(1=2�1=p)

k
X
k

�j0;k'j0;kkLp � k(�j;�)k`p � 2j0(1=2�1=p):

with implied constants of equivalence independent of j0, j.

Using Lemma 7.3,

kPj0fkLp � k(�j0;�)k`p � 2j0(1=2�1=p)
kQjfkLp � k(�j;�)k`p � 2j(1=2�1=p)

and so from s = � + 1=2 � 1=p we see that C � (kPj0fkp + kejk`q ) � k�kb�
p;q
.

In the other direction, telescoping sums give

ej = 2j� � kX
`�0

Qj+`fkLp � 2j� �X
`�0

kQj+`fkLp

� C � 2j� �X
`�0

k(�j+`;�)k`p � 2�(j+`)(1=p�1=2):
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Hence, de�ning dj by 2�jsdj = k(�j;�)k`p, and noting that s = � + 1=2 � 1=p,

ej � C �
X
`�0

dj+`2
�`�:

Hence formally we have the convolution
P

`�0 dj+`2
�`� = (h � d)j . Here the kernel h is in

`1 if � > 0. Hence,

k(ej)k`q � khk`1 � k(dj)k`q
and so

kPj0fk+ k(ej)k`q � C � k�kb�
p;q
:

This �nishes the proof in the case p; q � 1. The general case is not essentially di�erent,

but we need some prefatory comments. There are two de�nitions of Besov Space if p < 1:

one used by Peetre (1974), and by Frazier and Jawerth (1985); the other used by DeVore

and Popov (1988). The two de�nitions look di�erent, and for certain ranges of parameters
they are di�erent. However, in the range � > 1=p they give the same spaces. Orthogonal
wavelets of compact support give an unconditional basis of these spaces. And these spaces
are again characterized by rate of approximation through smooth orthogonal wavelets of

compact support.
The proof given above is general, the Lemmas are proved for all p > 0, so the proof

works for general p, with one proviso. The Lp norm does not obey the triangle inequality,
but instead the p-triangle inequality

kf + gkpp � kfkpp + kgkpp; 0 < p < 1;

compare DeVore and Popov (1988). Therefore, every place the triangle inequality would
be used, one should substitute the p-triangle inequality, and make the modi�cations this
would require. The changes are all entirely super�cial. The real work in the extension to
p 2 (0; 1) is in the proofs of the Lemmas.

Also, one should note that a matrix decaying exponentially fast away from the diagonal
and a convolution operator with kernel decaying exponentially fast away from the origin

will both be bounded on `q for any q > 0. 2

7.3 Lemmas Supporting Besov Equivalence

Here we prove the lemmas just referred to

7.3.1 Lemma 7.1

The assertion (7.5) concerning the orthogonal projection operator is well-known; it can be

easily had from a simple analysis of the cases p = 1;1, and interpolation.

The bound (7.4) may also be had by analysis of extreme cases p = 1;1; the cases
p 2 (0; 1] all follow the same pattern of argument; and p 2 (1;1) follow by interpolation

of extreme cases.
Note that Pj is bounded as an operator between L1 spaces. Indeed, using Lemma 7.3,

kPjfk1 � Ck(�j;�)k`1 � 2j=2 (7.9)
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and

j�j;kj � kfk1 � 2�j=2 (7.10)

so kPjfk1 � Ckfk1.
At the other extreme, p = 1, things are more complicated. We need the fact that

samples of f 2 �Vj at the natural rate have an `
p norm bounded the Lp norm of f .

Lemma 7.4 Let Sj denote the sampling operator

Sjf = (f(k=2j ))k2Z

Let �Vj denote the collection of sums
P

k
��j;k �'j;k generated by a continuous wavelet �' of

compact support. For all 0 < p � 1, we have the inequality

kSjfk`p � C(p) � 2j=pkfkLp f 2 �Vj ;

where C(p) does not depend on j or f .

This lemma will be proved after Lemma 7.3 below.
Combining Lemmas 7.3-7.4, if f 2 �Vj0 then

k(�j0;�)k1 � C � 2j0=2 � kfk1

Now by de�nition
�j+h;2hk = 2�h=2�j;k

and so
k(�j;�)k1 � 2(j

0�j)=2k(�j0;�)k1
which yields

k(�j;�)k1 � C � 2j0�j=2 � kfk1:
Using again Lemma 7.3, we have kPjfk1 � C � 2�j=2k(�j;�)k1. Combining these yields

kPjfk1 � C � 2j0�j � kfk1:

Interpolating between the cases p = 1;1 gives the full result (7.4).

7.3.2 Lemma 7.2

We begin by studying the operator norms for scale j 0 = 0, j0 < j, and for p � 1 and p =1.
If p � 1, and f 2 �V0 then

kf � Pjfkp � (
X
k

j��0;kjp k(I � Pj) �'0;kkpp)1=p � k( ��0;k)kk`p � sup
k

k(I � Pj) �'0;kkp:

But k( ��0;k)kk`p � C(p) � kfkp by Lemma 7.3, so

kI � Pjk�V0 � C(p) � sup
k

k(I � Pj) �'0;kkp; p � 1:
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For p =1 we have

j(f � Pjf)(x)j �
X
k

j��0;kj j(I � Pj) �'0;k(x)j

� k( ��0;k)kk`1 �
X
k

j(I � Pj) �'0;k(x)j:

Again by Lemma 7.3 we have

kI � Pjk�V0 � C(1) �
X
k

j(I � Pj) �'0;k(x)j; p =1:

Now Lemma 7.5 below gives immediately that for an (R;D)-interpolating wavelet trans-

form and a ( �R; �D) orthogonal wavelet transform, we have

j(I � Pj) �'(t)j � A` � (1 + jtj)�` � 2�jmin(D; �R); j � 0; ` > 0; t 2 R (7.11)

Hence
sup
k

k(I � Pj) �'0;kkp � C(p) � 2�jmin(D; �R); p � 1;

and

sup
x

X
k

j(I � Pj) �'0;k(x)j � C(1) � 2�jmin(D; �R):

For any p 2 (1;1) the operator norm is not larger than the maximum at the two endpoints
p = 1;1, so

kI � Pjk�V0 � C(p) � 2�jmin(D; �R); p 2 [1;1]:

The inequality extends by dilation to other scales.

The argument for the norm of the operator �Pj is exactly the same.

7.4 General Technical Lemmas

For use in later sections, we state a general result. We recall that �j;k denotes the standard-

ization operator (�j;kf)(t) = 2�j=2f(2�j (t+k)), so that for wavelets on the line, �j;k j;k =  

and �j;k'j;k = '.

Lemma 7.5 Let (fj;k) be a system of functions, not necessarily dilations and translations of
a single function, indexed by a subset of Z2 and satisfying the uniform smoothness condition

(�j;kfj;k)j;k occupies a bounded subset of C
�R

and the localization condition

dm

dtm
(�j;kfj;k)(t) � A` � (1 + jtj)�`; t 2 R; ` > 0; 0 � m � b �Rc:

Suppose that (vj;k) is a localized family of functions

(�j;kvj;k)(t) � A` � (1 + jtj)�`; t 2 R; ` > 0;
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generating a family of operators

Pjf =
X
k

f(k=2j)vj;k

which preserves polynomials of degree D:

Pj� = �; � 2 �D:

Then, uniformly in j0 � j and k

j�j0;k(I � Pj)fj0;kj(t) � 2(j
0�j)min( �R;D) � C` � (1 + jtj)�` t 2 R; ` > 0: (7.12)

Proof. Let � = min(D; �R), m = b�c, and � = ��m. Let � = �j;kfj;k. Then � 2 Cm.

1. Note that if �x is the Taylor polynomial of degree m at x, then for t 2 [x� h; x+ h],

j�(t)� �x(t)j � C� � h� � j�(m)
x (t)jC�[x�h;x+h]; (7.13)

where C� is an absolute constant depending only on �. (For m > 0 this can be seen
from the identity, for t > x,

�(t)� �x(t) = 1=m!
Z t

x
(u� x)m�1(�(m)(u)� �(m)(x))du:)

2. From the inequalityX
k

(1 + ajkj)�(1 + jt� kj)�` � B(`; �) � (1 + ajtj)�; ` � �+ 2; t 2 R;

and the rapid decay of vj;k, we getX
k

(1 + ajkj)�v0;k(t) � C � (1 + ajtj)�; t 2 R;

and similarly for other scales j. As a result, the inequality

jr(t)j � � � C � (1 + ajt� xj)�; t 2 R;

for x 2 R, implies

j(Pjr)(t)j � � � C 0 � (1 + ajt� xj)�; t 2 R:

3. Combining items 1 and 2, we have that with x = 2�j(k + 1=2), h = 2�j�1, � = h� =

2�(j+1)�, and a = h�1,

j�(t)� �x(t)j � C � h� � j�(m)jC�[x�h;x+h]

� � � (1 + jt� xj=h)� � C � j�(m)jC� [x�h;x+h]

� � � (1 + jt� xj=h)� � C �A0
`;� � (1 + jxj)�`:

Hence, putting r(t) � �(t)� �x(t) we have

j(Pjr)(t)j � � � (1 + jt� xj=h)� � C � (1 + jxj)�`

where C does not depend on x or j.
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4. By assumption, for any polynomial of degree m � D, we have Pj� = � and so

�� (Pj�) = (�� �)� Pj(�� �):

In particular,

j�(t)� (Pj�)(t)j � jr(t)j+ j(Pjr)(t)j:
For t 2 [x� h; x+ h], (1 + jt� xj=h)� � 2�, so

j�(t)� (Pj�)(t)j � � �C � (1 + jtj)�`; t 2 [x� h; x+ h]:

As this is true, with the same constant C for each k, the same inequality holds for

all t 2 R. Hence (7.11) follows.

Lemma 7.6 Let (wj;k)k be any collection of continuous functions (not necessarily dilates

and translates of a single function) satisfying the rapid decay estimates

j�j;kwj;kj � A` � (1 + jtj)�` t 2 R; ` > 0; j; k 2 Z:

Then, for each p 2 (0;1]

k
X
k

cj;kwj;kkLp � C(p) � 2j(1=2�1=p) � k(cj;k)kk`p (7.14)

where C(p) is independent of j and depends on the system of functions (wj;k) only through
the constants (A`).

First, consider p � 1:

kfkp � (
X
k

jcj;kjp kwj;kkpp)1=p �
 
sup
k

kwj;kkp
!
� k(cj;k)kk`p :

The rapid decay estimates give that for ` = p�1 + 1,

kwj;kkp � 2j(1=2�1=p) �A` � (
Z
(1 + jtj)�`pdt)1=p � C(p) � 2j(1=2�1=p):

Second, consider p =1

kf(x)k �
X
k

jcj;kj jwj;k(x)j � k(cj;k)kk`1 �
X
k

jwj;k(x)j

The rapid decay estimates give that for ` > 1,

sup
x

X
k

jwj;k(x)j � 2j=2 �A` � sup
x

X
k

(1 + jx� kj)�` � C(1)2j=2

and so

kfk1 � 2j=2 � C(1) � k(cj;k)kk`1 :
By interpolation we get for all p 2 (1;1)

kfkp � C(1)1=pC(1)1�1=p � 2j(1=2�1=p) � k(cj;k)kk`p :2
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Lemma 7.7 Let (wj;k)k be a collection of continuous functions, not necessarily translates

and dilates of a single function. Suppose that each space Fj;k consisting of restrictions to

[0; 1] of functions �j;kf where f =
P

k cj;kwj;k, is �nite dimensional. Suppose that the F j;k,

although not necessarily the same, satisfy the uniform estimate

Np(F j;k) � N(p) <1; k 2 Z:

Finally suppose that the wj;k are interpolating, so that wj;k(k
0=2j) = 0, unless k0 = k where

wj;k(k=2
j) = 2j=2. Then, for each p 2 (0;1],

N(p)k
X
k

cj;kwj;kkLp � 2j(1=2�1=p) � k(cj;k)kk`p: (7.15)

Proof. De�ne

Cp(F) = supfjf(0)j : f 2 F ;
Z 1

0
jf(t)jpdt � 1g:

We get by dilation and the interpolation condition that

jcj;kj � 2�j=2 � Cp(F j;k) � (2�j
Z (k+1)=2j

k=2j
jf(t)jpdt)1=p:

Summing across k,

X
k

jcj;kjp � 2�jp(1=2�1=p) �max
k
Cp(F j;k)

p �X
k

Z 2�j(k+1)

2�jk
jf jp

= max
k
Cp(Fj;k)

p � 2�jp(1=2�1=p) � kfkpp:

Now let f 2 F j;k. Then

jf(t)j � kfkL1[0;1] � Np(F j;k)kfkLp[0;1]
Hence Cp(Fj;k) � Np(F j;k) � N(p).

Lemma 7.8 Let (wj;k)k be a collection of continuous functions, not necessarily translates

and dilates of a single function. Suppose that each space Fj;k consisting of restrictions to
[0; 1] of functions �j;kf where f =

P
k cj;kwj;k, is �nite dimensional. Suppose that the F j;k,

although not necessarily the same, satisfy the uniform estimate

Np(F j;k) � N(p) <1; k 2 Z:

Let Sj denote the sampling operator (Sjf)k = f(k=2j). Then

kSjfkp � N(p) � 2j=p � kfkp (7.16)

Proof. It is enough to prove the result at scale j = 0

jf(0)j � kfkL1[0;1] � N(p) � kfkLp[0;1]:
Hence X

k

jf(k)jp � N(p)p
Z
jf(t)jpdt

and we are done. 2
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7.5 Proofs for Triebel Equivalence

As usual for Triebel-Lizorkin spaces, the proof is a vector-valued version of the Besov

case. Compare Frazier and Jawerth (1990). De�ne dj(t) = 2j�(Qjf)(t) and hj(t) =

2j�
P
�j;k�j;k(t), where �j;k is the L2-normalized characteristic function 2j=21Ij;k , and the

coe�cients �j;k are the interpolating wavelet coe�cients of f . De�ne similar quantities

for based on a smooth orthonormal wavelet expansion: �dj = 2j�( �Qjf)(t) and �hj(t) =

2j�
P

��j;k�j;k(t), where now the ��j;k are orthonormal wavelet coe�cients of f .

It is known (Frazier and Jawerth, 1990) that for compactly supported orthogonal

wavelets � j;k of regularity �R and moments through order �D vanishing, if min( �R; �D) > � the

norm k��kf�
pq
of the orthogonal wavelet coe�cients is an equivalent norm for Triebel-Lizorkin

space. For the case p = 2 see also Meyer (1990).

We will argue below that this norm is equivalent to a measure of approximation speed

by orthogonal projection on �Vj , and establish that, if � > 1=p, the interpolation projection
on Vj has comparable speed of convergence.

Let (fj(t))j�j0 be a sequence of functions in Lp(R). De�ne the norm

k(fj(t))kLp(`q) �
0
@Z (

X
j�j0

jfj(t)jq)p=qdt
1
A

1=p

:

Note that
k��kf�

pq
= k(�hj(t))kLp(`q) + k(�j0;k)kLp:

The proof goes in two stages. The �rst shows the equivalence of k��kf�
pq
with

kfk �F�
pq
� k( �dj(t))kLp(`q) + k �Pj0fkLp

and that the corresponding unbarred quantity

kfkF�
pq
� k(dj(t))kLp(`q) + kPj0fkLp

is equivalent to k�kf�
pq
.

In the second stage, we will argue that

k(dj(t))kLp(`q) � C � kfk �F�
pq

(7.17)

and

k( �dj(t))kLp(`q) � C � kfkF�
pq
: (7.18)

These inequalities imply the equivalences

k�kf�
pq
� kfkF�

pq
� kfk �F�

pq
� k��kf�

pq
; (7.19)

and hence the theorem.

For the �rst stage we need two technical facts. Following Frazier and Jawerth (1990) we
use the Hardy-Littlewood maximal function. For r 2 (0;1) de�ne the Hardy-Littlewood

Maximal Function

Mr(f)(t) =

 
sup
t2[a;b]

(b� a)�1
Z b

a
jf jr(u)du

!1=r

:
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This is typically larger than f ; but the Fe�erman-Stein Vector-Valued Maximal Inequality

(Frazier and Jawerth, 1990, Appendix A) says that is not much larger if r < min(p; q):

k(Mr(fj)(t))kLp(`q) � C(r; p; q)k(fj(t))kLp(`q): (7.20)

The second fact derives from Lemma 7.9 below: with a constant C independent of j or

f or t

jdj j(t) � C �M1(hj)(t); t 2 R

jhjj(t) � C �M1(dj)(t); t 2 R:

Armed with these inequalities, we have, in one direction

k(dj(t))kLp(`q) � C � k(M1(hj)(t))kLp(`q) � C � k((hj)(t))kLp(`q):

In the other,

k(hj(t))kLp(`q) � C � k(M1(dj)(t))kLp(`q) � C � k((dj)(t))kLp(`q):

Combining these gives the equivalence

k�kf�
pq
� kfkF�

pq
:

The equivalence of corresponding barred quantities is precisely analogous. This completes

the �rst stage.
For the second stage, develop the telescoping sum

2�j�dj = (I � Pj)f = (I � Pj)( �Pj0f +
X
j0�j0

�Qj0f)

which gives
dj = 2j� � (I � Pj) �Pj0f +

X
j0�j0

2(j�j
0)�(I � Pj) �dj0:

Now by Lemma 7.5

j(I � Pj)'j0;0j(t) � 2�(j�j0)min(D; �R) � wj;k;`(t) �A`

Hence, with �Pj0f =
P

k
��j0;k �'j0;k,

j(I � Pj) �Pj0f j(t) � 2�(j�j0)min(D; �R) �A` �
X
k

j��j0;kj � wj;k;`(t):

We let r < p be a constant to determine later, and set wj;k;`(t) = (1+ j2jt� kj)�`2j=2, with
` = 2 + 1=r. Applying Lemma 7.9 ,

X
k

j��j0;kj � wj;k;`(t) � C �Mr(
X
k

��j0;k �'j0;k)(t) t 2 R;

and so

(I � Pj)( �Pj0f)2
j� � 2j0�2�(j�j0)(min(D; �R)��) � C �Mr( �Pj0f)(t) =

~dj(t); say:
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Similarly, for j0 � j0 � j,

j(I � Pj) � j0;0j(t) � 2�(j�j0)min(D; �R) � wj;k;`(t) �A`

whence

(I � Pj)( �dj0) � 2�(j
0�j)(min(D; �R)��) �C �Mr( �dj0)(t):

Finally, we need Lemma 7.10. For j 0 � j, it gives

j(I � Pj) �dj0 j(t) � 2(j
0�j)=r �Mr( �d

0
j)(t): (7.21)

Combining these estimates, we get

jdj(t)j � j ~dj(t)j+ C �
X
j0�j0

Mr( �dj0)(t) � 2�jj0�jj��

where � = min(min(D; �R)��; ��1=r). If � > 1=p we can choose r < p so that ��1=r > 0.
Then, putting �mj0(t) =Mr( �dj0)(t) and H(j; j 0) = C � 2�jj�j0 j��, we have

kH �mk`q (t) � C � k �mk`q(t)

and so
k(dj(t))kLp(`q) � k( ~dj(t))kLp(`q) + C � k( �mj(t))kLp(`q):

We conclude by Fe�erman-Stein that

k(dj(t))kLp(`q) � k( ~dj(t))kLp(`q) + C � k( �dj(t))kLp(`q)
� C(k �Pj0fkp + k( �dj(t))kLp(`q)) = Ckfk �F�

pq

Similar arguments yield the companion inequality (7.18).

7.5.1 Lemmas Supporting Triebel Equivalence

Lemma 7.9 Let wj;k;` = 2j=2(1 + j2jt � kjj)�`. Suppose that the sums
P

k �j;kwj;k are
piecewise �nite-dimensional. Let Fj;k denote the space of renormalized restrictions �j;kf
where f =

P
k �j;kwj;k. Suppose that these spaces obey the uniform estimate

Nr(Fj;k) � N(r):

Suppose in addition that the wj;k are interpolating, so that

�j;k = f(k=2j )2�j=2:

Then for ` > 1 + 1=r, and r � 1

X
k

j�j;kjwj;k;`(t) � C �Mr(
X
k

�j;kwj;k)(t)

where the constant is an absolute multiple of N(r).
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Proof.

j�0;kj � kfkL1[k;k+1] � N(r) � kfkLr [k;k+1]:

and X
k

j�0;kjwj;k;`(0) � N(r) �A` �
X
k

kfkLr [k;k+1](1 + jkj)�`:

The result now follows from

X
k

kfkLr[k;k+1](1 + jkj)�` � C �Mr(f)(0)

which is an easy exercise. (Compare Frazier and Jawerth (1990) Appendix A).

Lemma 7.10 Suppose that the vector space �Wj of sums
P

k ��j;k � j;k is piecewise �nite-

dimensional, with uniform bound N(r), and that the terms are uniformly of rapid decay.
For ` = 2 + 1=r, and r 2 (0;1)

jPj(
X
k

��j0;k � j0;k)(t) � C � 2(j0�j)=rMr(
X
k

��j0;k � j0;k)(t); j0 > j:

where the constant C may be chosen independently of j0 and j as an absolute multiple of

N(r).

Proof. Set fj0(t) =
P

k ��j0;k � j0;k. By rapid decay

jPjfj0 j(t) � A`

X
k

jfj0(k=2j)jwj;k;`(t)

Now suppose that k=2j
0

< t < (k + 1)=2j
0 � k0=2j

0 � u � (k0 + 1)=2j
0

. Set ~t = k=2j
0

,

~u = (k0 + 1)=2j
0

then by �nite-dimensionality,

jfj0j(u) � N(r) � (2j0
Z
I
j0 ;k

jfj0 jr(t)dt)1=r

� N(r) � 2j0=r � (~u� ~t)1=r � ((~u� ~t)�1
Z ~u

~t
jfj0 jr(t)dt)1=r

� N(r) � 2j0=r � (~u� ~t)1=r �Mr(fj0)(t)

� N(r) � (k0 � k + 1)1=r � 2(j0�j)=r �Mr(fj0)(t):

Hence,

X
k

jfj0(k=2j)jwj;k;`(t) � C � 2(j0�j)=r �Mr(fj0)(t) �
X
k

(jkj+ 1)1=r(1 + jkj)�`;

and the Lemma follows. 2
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7.6 Proofs for Section 3.2

Besov Equivalence: Our proof of Theorem 2.7 is actually quite general and adapts without

essential change to give a proof of Theorem 3.6. One adapts the proof to life on the interval

by substituting Lp[0; 1] for Lp, P
[0;1]
j for Pj and Vj [0; 1] for Vj , and pursues the same proof

line-by line. In the end, the proof rests on the establishment of the four conclusions (7.12),

(7.14), (7.15), (7.16) o�ered by Lemmas 7.5-7.8. Those lemmas apply equally well in the

interval case; one only has to establish the needed uniform estimates

As we have seen, the wavelets  
[ ]
j;k and '

[ ]
j;k are of uniformly compact support. Let �j;k

denote the standardization operator which maps f into 2�j=2f(2�j (t� k)). Then we have,

for constants A,B,

j�j;k [ ]
j;kj � A � 1[�B;B]; j � j0; k 2 Kj :

j�j;k'[ ]
j0;k
j � A � 1[�B;B]; j � j0; k 2 Kj :

The same localization bounds hold for derivatives through order bRc. Hence the needed
uniformities for Lemmas 7.5-7.6 hold, and the key conclusions (7.12)-(7.14) follow.

Moreover, the spaces Vj;k given by the restriction of renormalized functions

(�j;kf)j[0;1]; f 2 Vj[0; 1]
are all �nite-dimensional, because of the uniform support bounds. Similarly, the spaces
Wj;k given by

(�j;kf)j[0;1]; f 2 Wj[0; 1]

are �nite dimensional. Even looking over all scales j � j0 there are only a �nite number of
di�erent such spaces, because they are made of combinations of restrictions '(� � k0)j[0;1],
'
#
k (� � k0)j[0;1], '[k(� � k0)j[0;1],  (� � k0)j[0;1],  #

k (� � k0)j[0;1],  [
k(� � k0)j[0;1]. Hence, recalling

the de�nition of Np(F) in section 2.2, we have

N [ ]
p = sup

j�j0

max(Np(Vj;k); Np(Wj;k)) <1:

Consequently, the needed uniform �nite-dimensionality holds, and we may apply Lemmas
7.7 and 7.8 to get the conclusions (7.15), (7.16).

With these technical underpinnings established, and the relevant notational substitu-

tions made, the proof of Theorem 2.7 becomes also a proof of Theorem 3.6.
Triebel Equivalence: The argument is similar; one adapts the proof of Theorem 2.8 to

the interval case by making the obvious substitutions in notation. The needed uniformities
for the technical lemmas are established by the arguments we just gave in the Besov case.

7.7 Proofs for Section 3.3

Proof of Theorem 3.8 We �rst note that there is J = J(�; p; k�kb�
p;q
) so that

�
(�)
j;k = 0; j � J; k 2 Kj :

Indeed,

k(�j;k)kk`1 � k(�j;k)kk`p � 2�j(�+1=2�1=p)k�kb�
p;q
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so de�ning J as the unique real root of

2�j(�+1=2�1=p)k�kb�
p;q

= �2�j=2;

does the trick. Evidently,

J(�; p; k�kb�
p;q
) = (� � 1=p)�1 � log2(k�kb�p;q=�):

Hence,

kf � f (�)k1 �
bJcX
j=j0

k
X
k

(�j;k � �
(�)
j;k) 

[ ]
j;kk1 +

X
j�J

k
X
k

�j;k 
[ ]
j;kk1

Let M1 be the maximum number of wavelets at any level j \touching" any single point

x 2 [0; 1]. Let M2 be the maximum L1 norm of any standardized wavelet ( or ',

boundary-corrected or not). Then for any set of coe�cients (cj;k)k,

kX
k

cj;k 
[ ]
j;kk1 �M1 �M2 � k(cj;k)kk1 � 2j=2

Applying this at levels j � J with cj;k = �j;k��(�)
j;k, and noting that j�j;k��(�)

j;kj � � � 2�j=2,
gives

bJcX
j=j0

kX
k

(�j;k � �
(�)
j;k) 

[ ]
j;kk1 �

bJcX
j=j0

M1 �M2 � � � 2�j=2 � 2j=2

� M1 �M2 � � � J

Applying this at levels j � J gives

X
j�J

k
X
k

�j;k 
[ ]
j;kk1 �

X
j�J

M1 �M2 � k(�j;k)k`1 � 2j=2:

Using
k(�j;k)k`1 � 2j=2 � k�kb�

p;q
� 2�j(��1=p)

gives

X
j�J

k
X
k

�j;k 
[ ]
j;kk1 � M1 �M2 � k�kb�

p;q
� 2�J(��1=p)=(1 � 2�(��1=p))

= M1 �M2 � �=(1� 2�(��1=p)):

Combining results:

kf � f (�)k1 �M1 �M2 � � � ((1� 2�(��1=p))�1 + J)

which is (3.6).

We now count the number of nonzero wavelet coe�cients. Note that

�p#fk : jaj;kj � �g � k(aj;k)kkpp
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Hence, putting � = � � 2�j=2,

N(�) �
JX

j=j0

k(aj;k)kkpp=(�2�j=2)p

� k�kb�
p;q
� ��p �

JX
j=j0

2j(��1=p)p = k�kb�
p;q
� ��p � c2(�; p)

which is (3.7).

Proof of Lemma 3.9.

The best `1(n+m) approximation to a vector v by a vector vn with n nonzero entries

is obtained by setting to zero the m entries which are smallest in absolute value. The

resulting approximation error is the size of the largest of those entries which were set to

zero. Considering the example where all elements of the vector have the same absolute
value, we see that the error in this approximation can be as large as that of the `1 norm

of the vector v itself. Hence the minimax error over a hypercube fv : kvk`1(n+m) � �g is

sup
kvk`1(n+m)��

inf
vn:#fi:(vn)i 6=0g�n

kv � vnk1 = �:

The idea is to embed a 2j+1-dimensional hypercube into B�
p;q[0; 1], 2

j+1 > n and use the
above observation to bound the L1 error on its approximation by an n-term sum.

Consider the `p ball

�j;p(r) = f� : k(�j;k)kk`p � r �j0;k0 = 0; j0 6= j; �j0;k = 08kg:

Now evidently
k(�j;k)kk`p � 2�j(�+1=2�1=p)k�kb�

p;q
:

This tells us that the class of objects with B�
p;q[0; 1] norm � B contains an `p-ball �j;p(rj)of

radius rj = C � B � 2�j(�+1=2�1=p). As k(�j;k)kkp � 2j=p � k(�j;k)kk1, the class also contains

the hypercube �j;1(�j) with radius �j = rj � 2�j=p = C �B � 2�j(�+1=2).
Fix now j so that 2j � n < 2j+1. Let Fj be the collection of functions with wavelet

coe�cients in the hypercube �j;1(�j) with �j as above. The problem of approximating

this collection furnishes a lower bound on the problem of approximating the (larger) ball,
because of

sup
f2F

inf
fn2Sn

kf � fnk1 � sup
f2F j

inf
fn2Sn

kf � fnk1;

which expresses the setwise monotonicity of the minimax error.
Now let fn be any approximant with at most n nonvanishing wavelet coe�cients, and

write it as

fn = Pjfn +Qjfn + (I � Pj+1)fn = f<n + f=n + f>n ;

say. Now put for short kgkj = k(g(k=2j+1))k2Kj+1
k`1 . Then kf>n kj = 0, kfkj�1 =

kf=n kj�1 = 0 and

kfn � fkj = k(f<n + f=n )� fkj � max(kf<n kj�1; kf=n � fkj � kf<n kj)
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As f<n 2 Vj[0; 1], kf<n kj�1 � ckf<n kL1(R) � ckf<n kj and max(a; b� a � c) � b=(1 + c), so

kfn � fkj � max(kf<n kj�1; kf=n � fkj � ckf<n kj�1) � kf=n � fkj=(1 + c):

Finally, f=n is a sum of � n terms
P

k �
[n]
j;k 

[ ]
j;k. Hence

kf=n � fkj � c � 2�j=2 �max
k2Kj

j(�j;k � �
[n]
j;k)j:

Now by the above argument

sup
F j

inf
fn2Sn

max
k2Kj

j(�j;k � �
[n]
j;k)j = �j

and so

sup
f2F j

inf
fn2n

kf � fnk1 � c�j � 2j=2 � cn��: 2

7.8 Proof for Section 4.2

Besov Equivalence: The proof of Theorem 2.7 also furnishes a proof of Theorem 4.5, once

we make the substitutions of ~Vj for Vj and so on. In the end, the proof reduces the result to
the establishment of the four conclusions (7.12), (7.14), (7.15), (7.16) o�ered by Lemmas
7.5-7.8. Those lemmas apply equally well in the hybrid case; one only has to establish the
needed uniform estimates.

Because of the uniform bounds of Lemma 4.2, all the needed localizations and smooth-

ness bounds for Lemmas 7.5-7.6 follow easily. Also, Lemma 7.8 applies immediately, be-
cause it refers to sampling of the standard orthogonal wavelet bases and was already proved.

It only remains to establish a conclusion like (7.15). Now the argument is slightly
di�erent than before.

Lemma 7.11 Let the hybrid wavelets be de�ned by linked interpolating and orthogonal
wavelets. Then, for a constant C and for each p 2 (0;1],

C �N(p)kX
k

�j;k ~ j;kkLp � 2j(1=2�1=p) � k(�j;k)kk`p: (7.22)

and similarly for sums involving '. The constant C depends on p but not on j0 or j1 or f .

Proof. Let

f =
X
k

�0;k
~ 
[`]
0;k:

Then, for appropriate constants u
(`;k)
k0 ,

�0;k = 2�`=2
X
k0

u
(`;k)
k0 f(k0=2`):

Concerning the constants u
(`;k)
k0 we make two observations. First, by the compact support

of the wavelet �lters,
#fk0 : u(`;k)k0 6= 0g � C12

`; 8k; `; (7.23)
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and

#fk : u(`;k)k0 6= 0g � C2; 8k0; `: (7.24)

Second, by orthonormality of the pyramid �ltering operatorX
k0

(u
(`;k)
k0 )2 = 1; 8k; `; (7.25)

and

max
k0

ju(`;k)k0 j � C32
�`=2; 8k; `: (7.26)

Suppose p = 1. Then (7.24)-(7.26) give

X
k

j�0;kj �
X
k0

 
jf(k0=2`)j � 2�`=2X

k

ju(`;k)k0 j
!

=

 
2�`=2 sup

k0

X
k

ju(`;k)k0 j
!
�
 X

k

jf(k0=2`)j
!

�
�
C2 � C3 � 2�`

�
�
�
N(1)

Z
jf(t)jdt � 2`

�

= C2 � C3 �N(1) �
Z
jf(t)jdt

If 0 < p < 1 arguing similarly gives

X
k

j�0;kjp � C2 � C3 �N(p)p �
Z
jf(t)jpdt:

Suppose p =1. Then (7.24), (7.25) and Cauchy-Schwartz give
P

k0 ju(`;k)k0 j � C
1=2
1 � 2`=2

and

sup
k

j�0;kj � sup
k

X
k0

jf(k0=2`)j � 2�`=2ju(`;k)k0 j

�
 
2�`=2 sup

k

X
k0

ju(`;k)k0 j
!
�
 
sup
k

jf(k0=2`)j
!

� C
1=2
1 kfk1:

Hence, (7.22) holds with C = max(C2 � C3; C1).
Triebel Equivalence: The proof of Theorem 2.8 equally well gives a proof of 4.6. The

needed uniform estimates necessary to make the proof go through were already established

in the Besov case.

7.9 Proof for Section 5.2

The theorems follow from combining the reasoning for sections 3.2 and 4.2. The hybrid
wavelets for the interval are smooth and uniformly localized by the observation that they are

�nite linear combinations, with bounded numbers of terms, of neighboring hybrid wavelets

for the line, together with Lemma 4.4. They obey a uniform bound like (7.22) by the same
reasoning. Equipped with these technical tools, the proofs for the Besov and Triebel cases

given earlier go through line-by-line.
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