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Abstract

It is widely recognized that the performance of many image processing algorithms
can be significantly improved by applying multiscale image representations with the
ability to handle very efficiently directional and other geometric features. Wavelets
with composite dilations offer a flexible and especially effective framework for the
construction of such representations. Unlike traditional wavelets, this approach en-
ables the construction of waveforms ranging not only over various scales and loca-
tions but also over various orientations and other orthogonal transformations. Sev-
eral useful constructions are derived from this approach, including the well-known
shearlet representation and new ones, introduced in this paper. In this work, we in-
troduce and apply a novel multiscale image decomposition algorithm for the efficient
digital implementation of wavelets with composite dilations. Due to its ability to
handle geometric features efficiently, our new image processing algorithms provides
consistent improvements upon competing state-of-the-art methods, as illustrated on
a number of image denoising and image enhancement demonstrations.
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1 Introduction

It has become commonly understood that while 1D wavelets are optimal at
approximating point singularities, their 2D separable counterparts are not
equally effective at approximating singularities along curves which model edges
in images. The need for directional filtering in order to improve multidimen-
sional data processing was early recognized, for example, in the works [1,22,39].
More recently, new generations of directional representations were developed
which exhibit near optimal approximations on the class of cartoon images.
The most notable of these representations are the curvelets [40,7], the con-
tourlets [12] and the shearlets [25,33], which are constructed by defining sys-
tems of analyzing waveforms ranging not only at various scales and locations,
like traditional wavelets, but also at various orientations, with the number of
orientations increasing at finer scales.

Within the context of improved multidimensional representations, the theory
of wavelets with composite dilations, originally developed in [25–27], are es-
pecially important. This framework is a generalization of the classical theory
from which traditional wavelets are derived, and it provides a very flexible set-
ting for the construction of many truly multidimensional variants of wavelets,
such as the well known construction of shearlets, which was mentioned above.
Several additional sophisticated constructions using this approach were ob-
tained by Blanchard [4,5], by Kryshtal and Blanchard in a paper which ex-
ploits the connection with crystallographic groups [6], and by Kryshtal et
al. [31]. Furthermore, it was recently shown by two of the authors in [15] that
several recent filter bank constructions such as the hybrid wavelets of Eslami
and Rada [19–21] and the variants of the contourlets construction proposed
in [30,43] can either be derived or are closely related to systems obtained from
the framework of wavelets with composite dilations.

These results illustrate the potential of wavelets with composite dilations for
the construction of directional multiscale representations going far beyond tra-
ditional wavelets with respect to their ability to represent geometric features.
However, except for some very special cases, no satisfactory method for design-
ing efficient numerical implementations of wavelets with composite dilations
was developed so far, due to the difficulty of adapting the standard wavelet
implementation algorithms to this more general setting. The goal of this paper
is to introduce a new general procedure for the design of discrete multiscale
transforms which takes full advantage of the geometric features associated with
the framework of wavelets with composite dilations. Using this approach, we
are able to design and implement several new classes of directional discrete
transforms and to obtain improved implementations of known ones. As will
be illustrated in this paper, the newly derived algorithms based on wavelets
with composite dilations are highly competitive in imaging applications such
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as denoising and enhancement.

Recall that, for tasks such as image denoising and enhancement, where the ob-
jective is to extract or emphasize certain image features, it is often beneficial to
use redundant representations. A standard method for designing nonsubsam-
pled directional representations is to use critically sampled transformations in
combination with resampling operations (i.e., [11,21]). As will become clear
below, this approach is frequently associated with filters that do not faithfully
match with the desired theoretical spatial-frequency decomposition. By con-
trast, in this paper we introduce a novel filter bank construction technique
that enables the projection of the data directly onto the desired directionally-
oriented frequency subbands. A key new feature of our construction is the
ability to generate the transform coefficients by directly applying the action
of the matrices associated with the spatial-frequency decomposition. This is
in contrast to earlier implementations such as the discrete shearlet transform
in [16], which was designed to mimic the desired spatial-frequency decomposi-
tion. Not only our new approach follows directly from the theoretical setting,
but it also allows for more sophisticated composite wavelet decompositions
enabling a much finer handling of the geometry in the data. As special cases
of our approach, we obtain an improved implementation of the shearlet trans-
form and we introduce new hyperbolic composite wavelet transforms. The last
transforms, in particular, have potentially high impact in deconvolution and
other image enhancement applications, as indicated by the novel decompo-
sitions suggested in [9] and by the techniques for dealing with motion blur
recently proposed in [18].

1.1 Paper Organization

The definition and basic properties of wavelets with composite dilations, along
with several novel constructions are presented in Section 2. Their novel discrete
implementation procedures are discussed in Section 3. Numerical demonstra-
tions illustrating the performance of the new constructions for denoising and
image enhancement are presented in Section 4. Finally, concluding remarks
are given in Section 5.

2 Wavelets with composite dilations

Let us introduce the notation which will be used subsequently. Given τ ∈ Rn,
the translation operator Tτ on L2(Rn) is defined by

Tτ f(x) = f(x− τ), x ∈ Rn, f ∈ L2(Rn).
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For a ∈ GLn(R) (where GLn(R) denotes the group of invertible matrices on
Rn), the dilation operator Da is given by

Da f(x) = | det a|−1/2 f(a−1x).

We adopt the convention that the points x ∈ Rn are column vectors, while
the points ξ ∈ R̂n (the Fourier domain) are row vectors. Hence a vector x
multiplying a matrix a ∈ GLn(R) on the right is a column vector and a vector
ξ multiplying a matrix a ∈ GLn(R) on the left is a row vector; that is, ax ∈ Rn

and ξa ∈ R̂n. The Fourier transform of f ∈ L2(Rn) is given by

f̂(ξ) =
∫
Rn
f(x) e2πiξ·x dx,

where ξ ∈ R̂n and the inverse Fourier transform is

f̌(x) =
∫
R̂n
f(ξ) e−2πiξ·x dξ.

The standard wavelet systems generated by Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn) and
A = {ai : i ∈ Z} are the collections of functions of the form

{Dj
a Tk ψm : j ∈ Z, k ∈ Zn,m = 1, . . . , L},

which form a Parseval frame for L2(Rn). That is, for all f ∈ L2(Rn), the
following expansion formula 1 holds:

∥f∥2 =
∑
j∈Z

∑
k∈Zn

|⟨f,Dj
a Tk Ψ⟩|2.

Note that the traditional wavelet systems are obtained with a = 2 I, where I
is the identity matrix. That is, the dilation factor is the same for all coordinate
axes.

The wavelets with composite dilations [25] overcome the limitations of standard
wavelets in dealing with the geometry of multivariate functions by including
a second set of dilations. Namely, they have the form

AAB(Ψ) = {DaDb Tk Ψ : k ∈ Zn, a ∈ A, b ∈ B},

where A, B are countable subsets of GLn(R) and the matrices b ∈ B satisfy
| det b| = 1. Analogous to standard wavelet systems, Ψ ⊂ L2(Rn) is chosen so
that

∥f∥2 =
∑
a∈A

∑
b∈B

∑
k∈Zn

|⟨f,DaDb TkΨ⟩|2,

1 Recall that an orthonormal basis is a special case of a Parseval frame; however,
the elements of a Parseval frame need not be orthogonal.
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for any f ∈ L2(Rn). Usually, the matrices a ∈ A are expanding (but not
necessarily isotropic, as in the traditional wavelet case); the matrices b ∈ B,
which are non-expanding, are associated with rotations and other orthogonal
transformations. As a result, one can define systems of wavelets with composite
dilations containing elements that are “long and narrow” and range over many
locations, scales, shapes and directions. As mentioned above, a particularly
prominent example of wavelets with composite dilations is the shearlet system,
which provides a nearly optimally sparse representation for a general class of
images and other high dimensional data [23,24]. Several additional examples
will be described below.

The theory of wavelets with composite dilations extends nicely many of the
standard results of wavelet theory (see [25–27]) and, at the same time, it allows
for a much richer directionality in its representation. In particular, it is rather
straightforward to obtain the following simple conditions for the constructions
of wavelets with composite dilations in the case where the generator ψ is chosen
such that ψ̂ = χS, where S ⊂ R2 and χS denotes the characteristic function of
S. Although the result below holds in any dimension, we state it in dimension
n = 2 since this will be the situation considered in the rest of the paper.

Theorem 1 Let A,B be subsets of GL2(R) and S ⊂ F ⊂ R2. Suppose that
the following conditions hold:

(1) R̂2 =
∪

k∈Z2(F + k),
(2) R̂2 =

∪
a∈A,b∈B S (ab)−1,

where the unions are disjoint up to a set of measure zero. Then for ψ = (χS)
∨

the system AAB is a Parseval frame for L2(R2). If, in addition, ∥ψ∥ = 1, then
AAB is an orthonormal basis for L2(R2).

Hence, in analogy to the wavelet case, AAB is a system of wavelets with
composite dilations if the collections of A- and B-dilations of S form a tiling
of the frequency plane.

It is clear that the systems described in Theorem 1 are not well-localized in
the spatial domain, since their elements are characteristic functions of sets
in the frequency domain and, hence, have slow spatial decay. Wavelets with
composite dilations which are well-localized require ad hoc constructions such
as the shearlets in [23] or the constructions described in [15]. Some additional
new well-localized constructions are introduced in this paper.
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2.1 Some Constructions

In this section, we apply Theorem 1 to construct several examples of wavelets
with composite dilations for L2(R2). This is useful both to illustrate the vari-
ety of possible constructions which can be derived from this approach, and to
set the groundwork for new discrete multiscale transforms which will be de-
veloped in Section 3. Notice that Constructions 1-3 are not new (see [26,27]),
and are included for completeness and comparison. As indicated below, Con-
structions 1-2 are formally equivalent to systems recently introduced in the
literature using an ad hoc construction, but they can be derived from the
general framework of wavelets with composite dilations. More attention will
be devoted to Construction 4, which is new.

2.1.1 Construction 1

Let A = {aj : j ∈ Z} where a = ( 1 1
−1 1 ) (the quincunx matrix) and consider

B = {±b0,±b1,±b2,±b3} where b0 = ( 1 0
0 1 ), b1 = ( 1 0

0 −1 ), b2 = ( 0 1
1 0 ), b3 =

( 0 −1
−1 0 ). Notice that B is the group of symmetries of the square.

S b_2S b_3

SS b_1

S Q

S

S b_2

S b_1

S b_3

Fig. 1. Tiling of the frequency domain associated with a system of wavelets with
composite dilations, where a is the quincunx dilation matrix and B is the group of
symmetries of the square.

Let ψ̂(ξ) = χS(ξ), where the set S is the union of the triangles with ver-
tices (1, 0), (2, 0), (1, 1) and (−1, 0), (−2, 0), (−1,−1), which is illustrated in
Figure 1. A direct calculation shows that S satisfies the assumptions of The-
orem 1, so that the system

AAB(ψ) = {Dj
aDb Tk ψ : j ∈ Z, b ∈ B, k ∈ Z2}

is an orthonormal basis for L2(R2) (in fact, it is a Parseval frame and ∥ψ∥ = 1).

As noticed in [15], the frequency partition achieved by the Hybrid Quincunx
Wavelet Directional Transform (HQWDT) from [21] is a simple modification
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S b_3

S
S b_1

S b_2

R1

R2

R3

R1

R2

R3

R1 A

R2 A

R3 A

R B_3

R B_2

R B_1

R B_1

R B_2

R B_3

Fig. 2. Left: tiling of the frequency domain associated with a system of wavelets with
composite dilations where a is the quincunx dilation matrix and B is the group of
symmetries of the square. Right: tiling of the frequency domain associated with a
system of wavelets with composite dilations where a = 2I and B is the group of
symmetries of the square.

of this construction, which is obtained by splitting each triangle of the set
S into 2 smaller triangles. Another example, with the same matrices A and
B, but a different generating set S, is illustrated in Figure 2 on the left.
For future labeling, we will refer to this second construction concisely as the
ab-star decomposition alluding to its star-like spatial-frequency tiling and its
composite wavelet origin.

2.1.2 Construction 2

Let A = {aj : j ∈ Z} where a = ( 2 0
0 2 ) and consider B = {b0, b1, b2, b3} where

b0 = ( 1 0
0 1 ), b1 = ( 1 0

0 −1 ), b2 = ( 0 1
1 0 ), b3 = ( 0 −1

−1 0 ).

Let R be the union of the trapezoid with vertices (1, 0), (2, 0), (1, 1), (2, 2) and
the symmetric one with vertices (−1, 0), (−2, 0), (−1,−1), (−2,−2). Next, we
partition each trapezoid into right triangles Rm, m = 1, 2, 3, as illustrated
in Figure 2 on the right. Hence we define Ψ = {ψm : m = 1, 2, 3}, where
ψ̂m(ξ) = χRm(ξ). Then the system

AAB(Ψ) = {Dj
aDb Tk Ψ : j ∈ Z, b ∈ B, k ∈ Z2}

is an orthonormal basis for L2(R2).

2.1.3 Construction 3.

Another example of a system of wavelets with composite dilations is obtained
by keeping the same set A of dilation matrices as in Construction 2, and re-
defining B as the set {bℓ : −3 ≤ ℓ ≤ 2}, where b is the shear matrix ( 1 1

0 1 ). For
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that, letR be the union of the trapezoid with vertices (1, 0), (2, 0), (1, 1/3), (2, 2/3)
and the symmetric one with vertices (−1, 0), (−2, 0), (−1,−1/3), (−2,−2/3),
R̃ = Rr, where r = ( 0 1

−1 0 ) and define Ψ = {ψm : m = 1, 2}, where ψ̂1 = χR,

and ψ̂2 = χR̃. It follows that the system

AAB(Ψ) = {Dj
aDb Tk Ψ : j ∈ Z, b ∈ B, k ∈ Z2}

is an orthonormal basis for L2(R2). For practical applications, it is useful to
modify this system by restricting the scale parameter to the values j ≥ 0
and by taking care of the low frequency region of the frequency plane using a
standard wavelet basis. The frequency tiling corresponding to this system is
illustrated in Figure 3. As observed in [15], this frequency tiling is similar to

R b^2 A 

R 

R b^(−1)

R b^2

R b

R 

R b^2

R b A 

R A

R b^2 A 

R b^(−1) A 
R b

R b^(−1) A 

R A

R b A 

Fig. 3. Tiling of the frequency domain associated with a system of wavelets with
composite dilations where a = 2I and B is the set of shearing matrices.

the one used for the Non-Uniform Directional Filter Bank (NUDFB) in [36]. If
this construction is combined with a separable generator, then one obtains the
frequency tiling corresponding to the Hybrid Wavelet Directional Transform
(HWDT) from [21] and to the directional filter bank construction used in [43].

2.2 Construction 4. Hyperbolic tiling

Another example of a system of wavelets with composite dilations is obtained
by using a set of matrices of the form

B =

bℓ =
λ−ℓ 0

0 λℓ

 : ℓ ∈ Z

 , (1)
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where λ > 1 is a fixed parameter 2 . As it will be clear from the analysis below,
this construction can be seen as a transformation of the shearlet tiling under
a nonlinear change of coordinates. In what follows, we will set λ =

√
2, but

the discussion below can be easily extended to other choices of λ.

Let us start by noticing that, for each k > 0, the set Hk = {(ξ1, ξ2) ∈ R̂2 :
ξ1ξ2 = k} consists of two branches of hyperbolas. Observe that, for any ξ =
(ξ1, ξ2) ∈ Hk, every other point ξ′ on the same branch of the hyperbola has
the unique representation ξ′ = (ξ1γ

−t, ξ2γ
t) for some t ∈ R, where γ > 1 is

fixed. In particular, any ξ = (ξ1, ξ2) in quadrant I can be parametrized by

ξ(r, t) = (
√
r (

√
2)−t,

√
r (

√
2)t),

where r ≥ 0, t ∈ R. This implies that

r = ξ1 ξ2, 2t =
ξ2
ξ1
.

For any k1 < k2, a set {ξ(r, t) : k1 ≤ r < k2} is a hyperbolic strip and, for
m1 < m2, a set {ξ(r, t) : k1 ≤ r < k2,m1 ≤ 2t ≤ m2} is a hyperbolic trapezoid.

SaSb

S

r

Sa

Sb

2^t

S

Fig. 4. The figure on the left shows the hyperbolic trapezoid S = SI , in quadrant I,
and the action of the matrices a and b on it. The plot on the right shows the same
regions in the coordinate system defined by r and 2t.

For any k ̸= 0, the right action of B preserves the hyperbolas Hk since

ξ bℓ = (ξ1, ξ2)

(
√
2)−ℓ 0

0 (
√
2)ℓ

 = (ξ1(
√
2)−ℓ, ξ2(

√
2)ℓ) = (η1, η2),

and η1η2 = ξ1ξ2. Hence, the right action of B maps an hyperbolic strip into
itself. In addition, a direct calculation shows that, if ξ2 = mξ1 and (η1, η2) =
(ξ1, ξ2)bℓ, then

η2
η1

= 2ℓ ξ2
ξ1

= 2ℓm. Hence, bℓ ∈ B maps a line through the origin

2 The main ideas the hyperbolic construction were introduced by one of the authors
and his collaborators in [26].
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of slope m into a line through the origin of slope 2ℓm. From the observations
above, it follows that the hyperbolic trapezoid

SI = {ξ(r, t) : 1 ≤ r < 2, 1 ≤ 2t ≤ 2}

is a tiling set of the hyperbolic strip {ξ(r, t) : 1 ≤ r < 2} for the B dilations.

Sb Sa
S

S

r

Sb

Sa

2^t

Fig. 5. The plot on the left shows the hyperbolic trapezoid S = S′
I , in quadrant I,

and the action of the matrices a and b on it. The plot on the right shows the same
regions in the coordinate system defined by r and 2t.

Next let

A =

aj =

√
2 0

0
√
2


j

: j ∈ Z

 . (2)

Since a maps the hyperbola ξ1ξ2 = k to the hyperbola ξ1ξ2 = 2k, it follows
that aj maps the hyperbolic strip {ξ(r, t) : 1 ≤ r < 2} to the hyperbolic strip
{ξ(r, t) : 2j ≤ r < 2j+1}. Figure 4 shows the hyperbolic trapezoid SI and
illustrates the action of a and b on SI . The observations above imply that SI

is a tiling set of quadrant I for the A and B matrices, that is:∪
j∈Z

∪
ℓ∈Z

SIa
jbℓ = quadrant I,

where the union is disjoint, up to sets of measure zero. To obtain a tiling of the
whole frequency plane, let SIII be the symmetric extension of SI in quadrant
III, that is SIII = {x ∈ R2 : −x ∈ S}. Also, define another hyperbolic trapezoid
in quadrant IV, namely

SIV = {(ξ1, ξ2) : (−ξ1, ξ2) ∈ SI}

and its symmetric extension SII in quadrant II. It then follows that∪
j∈Z

∪
ℓ∈Z

(SI ∪ SII ∪ SIII ∪ SIV ) a
jbℓ = R2,

where again the union is disjoint, up to sets of measure zero. Hence, letting
Ψ = (ψI , ψII , ψIII , ψIV ), where ψ̂I = χSI

, . . . , ψ̂IV = χSIV
, it follows from
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Theorem 1 that the system of wavelets with composite dilations

AAB(Ψ) = {Dj
aDbℓ Tk Ψ : j ∈ Z, k ∈ Z2, ℓ ∈ Z}

is a Parseval frame of L2(R2).

A variant of the construction above is obtained by replacing the set of diagonal
matrices used above with the new set

A =

aj =
2 0

0
√
2


j

: j ∈ Z

 . (3)

These matrices produce parabolic scaling, that it, the dilation factor along one
orthogonal axis is quadratic with respect to the other axis. This scaling factor
was found to be of fundamental importance in the construction of optimally
sparse multiscale systems such as curvelets and shearlets [7,23,32].

Similarly to the construction above, let S̃I be the hyperbolic trapezoid in the
frequency plane defined by

S̃I = {ξ(r, t) :
√
2/2 ≤ r < 2, 1 ≤ 2t ≤ 2}.

Again, right action of B maps any hyperbolic strip into itself. The matrix
a ∈ A maps the hyperbola ξ1ξ2 = k to the hyperbola ξ1ξ2 = 2

√
2k and, thus,

aj maps the hyperbolic strip {ξ(r, t) :
√
2/2 ≤ r < 2} to the hyperbolic

strip {ξ(r, t) : 2(2
√
2)j−1 ≤ r < 2(2

√
2)j}. Unlike the diagonal case, however,

the matrix a ∈ A does not preserve lines through the origin since it maps a
line ξ2 = mξ1 into ξ′2 =

√
2
2
mξ′1. The action of the matrices a and b on S̃I is

shown in Figure 5, which also shows that the sets S ′
Ia

ibℓ become increasingly
more elongated as i → ∞. Similarly to the construction above, by defining
trapezoids S̃II , S̃III and S̃IV in the other quadrants, it is easy to verify that
also in this case we obtain a tiling of the frequency plane as:∪

j∈Z

∪
ℓ∈Z

(S̃I ∪ S̃II ∪ S̃III ∪ S̃IV ) a
jbℓ = R2.

Once more, let Ψ = (ψI , ψII , ψIII , ψIV ), where ψ̂I = χ
S̃I
, . . . , ψ̂IV = χ

S̃IV
.

It then follows from Theorem 1 that the system of wavelets with composite
dilations

AAB(Ψ) = {Dj
aDbℓ Tk Ψ : j ∈ Z, k ∈ Z2, ℓ ∈ Z}

is a Parseval frame of L2(R2).

2.2.1 Well-localized Construction

In order to construct hyperbolic systems of wavelets with composite dilations
which are well-localized, it is useful to recall the following result.
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Theorem 2 ([26]) Let ψ ∈ L2(R2) be such that supp ψ̂ ⊂ Q = [−1/2, 1/2]2,
and ∑

j,ℓ∈Z
|ψ̂(ξ aj bℓ)|2 = 1 a.e. ξ ∈ R̂2,

where a, b ∈ GL2(R). Then the system of wavelets with composite dilations
(1), where A = {aj : j ∈ Z} and B = {bℓ : ℓ ∈ Z}, is a Parseval frame of
L2(R2).

For ξ = (ξ1, ξ2) ∈ R̂2, with ξ1 ̸= 0, let ψ̂ be defined by

ψ̂(ξ1, ξ2) = V (ξ1ξ2)W (
ξ2
ξ1
), (4)

where V , W ∈ C∞
c (R) satisfy suppV ⊂ [ 1

88
, 1
11
], suppW ⊂ [2

3
, 8
3
],∑

j∈Z
|V (2jr)|2 = 1 for a.e. r ≥ 0,

and ∑
ℓ∈Z

|W (2ℓ2t)|2 = 1 for a.e. t ∈ R.

The functions V and W can be obtained by appropriately rescaling a Meyer
wavelet and restricting its domain to the positive axis in the Fourier domain.

Hence we have the following corollary of Theorem 2.

Proposition 1 Let ψ ∈ L2(R2) be given by (4) and ψ′ be defined by ψ̂′(ξ1, ξ2) =
ψ̂(−ξ1, ξ2). Then for A given by (2) and B given by (1) the system of wavelets
with composite dilations

AAB(Ψ) = {Dj
aDbℓ Tk Ψ : j ∈ Z, k ∈ Z2, ℓ ∈ Z},

is a Parseval frame of L2(R2).

Proof. The support conditions on V,W ensure that supp ψ̂ is a pair of trape-
zoidal regions in quadrants I and III which are contained inside the unit cube
[−1/2, 1/2]2. In fact, V is constant along each branch of the hyperbola and is
defined along lines through the origin. Its support is contained between the
hyperbolas ξ1ξ2 = 1

88
and ξ1ξ2 = 1

11
. W is constant along each line through

the origin, is defined along hyperbolas and its support is contained in the cone
defined by the lines through the origin of slopes ξ2 =

2
3
ξ1 and ξ2 =

8
3
ξ1.

In addition, a direct calculation shows that, for all ξ = (ξ1, ξ2), with ξ1ξ2 ≥ 0
and ξ1 ̸= 0, we have:

∑
j∈Z

∑
ℓ∈Z

|ψ̂(ξ aj bℓ)|2
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=
∑
j∈Z

∑
ℓ∈Z

|V̂ (2jξ1ξ2)|2 |W (2ℓ
ξ2
ξ1
)|2

=
∑
j∈Z

|V̂ (2jξ1ξ2)|2
∑
ℓ∈Z

|W (2ℓ
ξ2
ξ1
)|2 = 1,

for ξ in quadrants I and III in R2. A similar calculation with ψ̂ replaced
by ψ̂′ yields a similar result valid for all ξ in quadrants II and IV of R2.
Hence

∑
j∈Z

∑
ℓ∈Z |Ψ̂(ξ aj bℓ)|2 = 1, for a.e. ξ ∈ R2. The proof now follows from

Theorem 2. 2

With a slight modification of the argument of Proposition 1 one can show that
it is possible to construct a similar well-localized Parseval frame by replacing
the set of isotropic dilations A given by (2) with the anisotropic dilations (3).

Fig. 6. Tiling of the frequency domain associated with a hyperbolic system of wavelets
with composite dilations.

Notice that, for a discrete implementation of the hyperbolic systems described
in this section, the indices j and ℓ need to be limited to a finite range. The
asymptotic regions not covered because of this discretization can then be dealt
with by partitioning the complementary regions with a Laplacian Pyramid-
type of filtering. A form of the tiling of the frequency plane associated with this
construction is illustrated in Figure 6. For the correct interpretations of this
figure, it is important to observe that the elements of the well-localized system
of wavelets with composite dilations ψ(ajbℓx) do overlap in the frequency
domain. that is, Figure 6 should be interpreted as a picture of the essential
frequency support (i.e., the regions where most of the norm is concentrated),
rather than the exact frequency support of the elements of the system.
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Fig. 7. Frequency tiling of a cone-based hyperbolic composite wavelet system. Notice
that the scaling matrix a is isotropic and the number of directional subbands is fixed
at each scale. If the matrix a was replaced by an anisotropic one, e.g., the parabolic
scaling matrix, then the number of directional subbands would double at each scale
level.

2.2.2 Cone-based hyperbolic construction

Like the case of shearlets, the hyperbolic construction suffers from a bias in
directional sensitivity along the orientations ±π/4,±3π/4. In addition, the
regions along the orthogonal axes in the frequency domain are only covered
asymptotically, for values ℓ→ ±∞. To overcome this situation, we define the
“cone-based” system of wavelets of composite dilations

{Dj
aDbℓ Tk, ψ : j ≥ 0, |ℓ| ≤ L, k ∈ Z2},

where bℓ ∈ B given by (1), a can be the isotropic or anisotropic dilation
matrix, L is chosen so that the system tiles the frequency plane only in the
cone π

8
≤ ξ2

ξ1
≤ 3π

8
, and ψ is given by (4). Using ψ′ defined as in Proposition 1

one covers the frequency plane in the cone 5π
8
≤ ξ2

ξ1
≤ 7π

8
. Finally, the remaining

two cones in the frequency domain are covered by rotating the above systems
by π/4. The picture of the frequency tiling associated with this decomposition
is given in Figure 7.

3 Composite Wavelet Implementation

3.1 Analysis Filter Design

In this section, we describe a novel approach for the construction of filters
that match the frequency tiling associated with the desired system of wavelets
with composite dilations. That is, given a system of wavelets with composite
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dilations AAB(Ψ), this approach allows us to directly apply the set of matrices
A and B to generate the specific spatial frequency tiling associated with the
system AAB(Ψ).

To describe our approach, consider a (generalized) wavelet ψ̂(ξ) = χS(ξ),
where S corresponds to a bounded region satisfying the conditions of Theo-
rem 1. For example, S can be chosen to be a trapezoidal hyperbola and the
set of matrices A and B to be A = {aj}, B = {bℓ}, as in Construction 4.

Hence, given a sequence of points {(ξn1 , ξn2 )}Nn=1 ∈ S that densely fills the
set S, we define (ξ

n

1 , ξ
n

2 ) = ⌈(ξn1 , ξn2 )⌉ = (⌈ξn1 ⌉, ⌈ξn2 ⌉), where ⌈·⌉ denotes the
ceiling function. To digitally create the desired filters, we assign the non-zero
entries of our starting filter Ĝ0,0 by the evaluation Ĝ0,0(ξ

n

1 , ξ
n

2 ) = 1. We then
proceed to create the other filters {Ĝi,ℓ} by assigning the non-zeros entries as
Ĝi,ℓ(η

n
1 , η

n
2 ) = 1 for (ηn1 , η

n
2 ) = ⌈(ξn1 , ξn2 ) ajbℓ⌉. Note that N needs to be chosen

large enough so that the points (ηn1 , η
n
2 ) are dense enough to fill out the regions

Sj,ℓ = Sajbℓ completely in terms of its pixelated image for all desired values
of j and ℓ. Figure 8 illustrates this construction.

-
ajbℓ

-
ajbℓ

Fig. 8. Illustrations of filter constructions where the number of samples used is small
for the purpose of presentation. The images on the left are the sequences of points
{(ξn1 , ξn2 )}Nn=1 contained in the region S. The images on the right are the sequences
of points {(ηn1 , ηn2 )}Nn=1 where (ηn1 , η

n
2 ) = ⌈(ξn1 , ξn2 )ajbℓ⌉.

This construction can be modified to create the well-localized version of wavelets
of composite dilations by the following modification. We start by creating an
initial densely supported filter with the desired windowing. By keeping track
of the multiple assigned grid points, the windowing can be appropriately com-
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Fig. 9. Examples of hyperbolic filters. From left to right: Time Domain, Frequency
Domain

pensated by assigning the average windowed value at these point locations.
Examples of this construction are shown in Figure 9 and a pseudo-code for
creating such filters is given in the Appendix.

This construction process can be applied to any generic planar region and
can be viewed as a refinement of the original discrete shearlet transform con-
struction given in [16]. In fact, when the techniques suggested in this paper
are used to design filters for a revised discrete shearlet transform, the newly
constructed discrete transform performs significantly better than its first in-
carnation. Recall that the original shearlet implementation was based on the
use of a mapping function that performed a re-arrangement of windowed data
in a pseudo-polar grid onto a Cartesian grid. In our new implementation, we
avoid the use of the mapping function and are able to produce the appropriate
windowed data directly onto the Cartesian grid. In addition, this implementa-
tion is multi-channel, so that the estimates provided from individual filtered
coefficients are not level-dependent and this improves the transform’s condi-
tioning. See Figure 10 for a representative illustration of the filters associated
with the new implementation.
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Ĝ1- -

Ĝ2- -

.... . .

-Ĝ12-

Ĝ13- -

-
...

Fig. 10. An illustration of a multi-channel filter bank designed to implement wavelets
with composite dilations such as the shearlet transform.

Also notice that, in the approach from [16], it was the inverse mapping function
that took care of weighting the multiple assigned pixel values. By avoiding the
re-mapping process, we can now avoid creating re-arrangement domains (a
process which usually generated some artefacts). In fact, we are able to obtain
the desired filters directly by applying the sets of A and B matrices associated
with the desired composite wavelet decompositions. This way, the discrete
implementation provides a perfect match with its theoretical counterpart and
it allows one to deal even with wavelets with composite dilations associated
with very complicated geometrical decompositions in the spatial frequency
plane.

3.2 Synthesis Filter Design

It would seem that our construction method of analysis filters should be ex-
tendable for the creation of the synthesis filters. However, by dealing with
the non-uniformity caused by the discretization of a continuous formulation,
we have introduced slight imperfections in the windowing. These slight devia-
tions can be particularly unforgiving in a multi-channel based implementation.
Consider, as an example, reformulating the contourlet transform naively into
a multi-channel implementation by applying the transform to a delta function
to find the analysis and synthesis filters. Figure 11 gives a visual illustration of
how this approach fails to achieve perfect reconstruction. This is particularly
interesting since the standard implementation of contourlets achieves perfect
reconstruction.
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̂̃G1 Ĝ1 ̂̃G2 Ĝ2 ̂̃G3 Ĝ3 ̂̃G4 Ĝ4

Fig. 11. By applying the nonsubsampled contourlet transform to a delta function,
we can obtain directional filters. Failure of the perfect reconstruction condition is
depicted using the analysis and synthesis filters found by applying the 2nd level
decomposition of contourlets to a delta function.

To improve upon the reconstruction estimate, we will construct the synthesis
filters by using a method devised for solving a related problem known as the
Multichannel Deconvolution Problem (MDP) which can roughly be stated as
follows. Given a collection {Gi}mi=1 of distributions on Rd (d ≥ 2), find a
collection {G̃j}mj=1 of distributions such that

m∑
j=1

G̃j ∗Gj = δ,

where δ is a Dirac delta distribution. In the Fourier-Laplace domain, when the
distributions are assumed to be compactly supported, this equation is referred
to as the analytic Bezout equation. This problem has a connection with the
polynomial Bezout equation which is usually solved for computing the filters
associated with traditional filter banks (see [10] for more details).

Several methods for solving the MDP in a discrete setting provide a way of
constructing appropriate synthesis filters (see [37,38,2,3,28,17,10,46] for details
on some of these methods). One of the earliest and simplest methods for
solving this problem was given in [37]. To explain its derivation, we formulate
the problem in the Fourier domain as follows. Suppose we wish to recover the
image f and that we are given m blurred images sj, i.e.

ŝj(ξ1, ξ2) = f̂(ξ1, ξ2) Ĝj(ξ1, ξ2) + n̂j for j = 1, . . . ,m,

where Gj and nj are the respective transfer function and associated noise
from the j-th imaging sensor. Assuming that no statistical information is
available, find the image fa which yields a least squares fit between predicted
and observed images, i.e., minimize

m∑
j=1

|ŝj(ξ1, ξ2)− f̂a(ξ1, ξ2) Ĝj(ξ1, ξ2)|2.

After differentiating with respect to f̂a, the solution is found to be

f̂a(ξ1, ξ2) =
m∑
j=1

ŝj(ξ1, ξ2)
̂̃
Gj(ξ1, ξ2),
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where

̂̃
Gj(ξ1, ξ2) =

Ĝj(ξ1, ξ2)∑m
k=1 |Ĝk(ξ1, ξ2)|2

,

for j = 1, . . . ,m.

The synthesis filters {G̃j}mj=1 are robust (and even optimal) with respect to any
residual noise left from the decompositions that might remain after threshold-
ing schemes have been utilized for denoising purposes. When filters of small
finite support are desired, we use the method given in [10], which reduces the
problem of finding the synthesis filters to solving a constrained matrix inver-
sion problem. This method is particularly flexible as the support sizes of the
synthesis filters can be controlled by a free parameter that balances between
local and global conditioning.

Another solution to achieve perfect recontruction is to slightly modify the
analysis filters to be

Ĝj(ξ1, ξ2) =
Ĝj(ξ1, ξ2)√∑m

k=1 |Ĝk(ξ1, ξ2)|2
, (5)

and to use

̂̃
Gj(ξ1, ξ2) =

Ĝj(ξ1, ξ2)√∑m
k=1 |Ĝk(ξ1, ξ2)|2

, (6)

as the synthesis filters for j = 0, . . . ,m−1. Note that this solution means that
the implemented transform corresponds to a tight frame. However, we have
found that for some constructions the MDP solutions perform better.

To emphasize the benefits of our proposed filter constructions, we show the dif-
ferences in frequency responses for some representatives of the new shearlet fil-
ters and the non-subsampled contourlet transform (NSCT) filters in Figure 12.
This illustration shows that whereas the NSCT filters may be constructed by
using conventional filter design elements, their desired frequency responses do
not truly match with the actual frequency responses. Nonetheless, the NSCT
filters are very effective and have other advantages.

Hence, using the notation introduced above, we summarized the algorithm
for the construction of the filters implementing the discrete wavelets with
composite dilations as follows:
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Fig. 12. Comparison of filters design methods. The images on the top correspond to
examples of the frequency responses of the newly constructed shearlet filters. The
images on the bottom correspond to examples of the frequency responses of the
NSCT for the same directional components.

(1) Generate a sequence of points {(ξn1 , ξn2 )}Nn=1 ∈ S fill-
ing densely the support region S associated with the
generator of the system of wavelets with composite
dilations.

(2) Given j and ℓ, form filter Ĝj,ℓ by assigning the value
at (ηn1 , η

n
2 ) = ⌈(ξn1 , ξn2 )ajbℓ⌉ to be the average of the

pre-image values of the generator function evaluated
at (ξn1 , ξ

n
2 ).

(3) Use synthesis filters
̂̃
Gj,ℓ(ξ1, ξ2) =

Ĝj,ℓ(ξ1, ξ2)∑
j,ℓ |Ĝj,ℓ(ξ1, ξ2)|2

,

solve for synthesis filters by solving the matrix system
as described in [10], or use (5) and (6).

Note that the filterbank implementation is highly efficient as it requiresO(N2 logN)
operations for an N ×N image.

4 Numerical Experiments

In this section, we present several numerical experiments on image restora-
tion and enhancement to demonstrate the effectiveness of the wavelets with
composite dilations and their discrete implementation.
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4.1 Denoising

In the first set of experiments, we illustrate the denoising capability of the
new wavelets with composite dilations by means of hard thresholding.

The objective of this problem is to recover an image x, given noisy observations

y = x+ γ,

where γ is zero-mean white Gaussian noise with variance σ2. By adapting the
standard wavelet shrinkage approach [35], we apply a hard threshold on the
subband coefficients of several versions of composite wavelets decompositions.
In particular, we choose the threshold Tj = Kσj, where σ

2
j is the noise variance

in each subband and K is a constant. In our experiments, we set K = 2 for
all subbands.

To assess the denoising performance of our method, we compare it against
three different competing discrete multiscale transforms: the nonsubsampled
wavelet transform (NSWT), the curvelet transform (curv), and the nonsub-
sampled contourlet transform (NSCT). The discrete wavelets with composite
dilations we have tested are the new shearlet transform (ab-shear), the cone-
based hyperbolic transform (c-hyper), the hyperbolic transform (hyper), the
star-like transform given in Construction 1 (ab-star). For the sake of com-
parison, we have also included the original implementation of the shearlet
transform (shear) [16]. The peak signal-to-noise ratio (PSNR) is used to mea-
sure the performance of the different transforms. Recall that, given an N ×N
image x and its estimate x̃, the PSNR in decibels (dB) is defined as

PSNR = 20 log10
255N

∥x− x̃∥F
,

where ∥.∥F is the Frobenius norm. In Tables I and II, we show the results
obtained using various discrete transforms on the Peppers and Barbara images,
respectively. The highest PSNR for each experiment is shown in bold. As it can
be seen from the tables, all our new transforms provide superior or comparable
results to that obtained using NSWT, NSCT and curvelets. Indeed, in some
cases, the composite wavelet transforms provide improvement of nearly 1 dB
or more compared to the competing algorithms. Figures 13, 14, 15 and 16
show some of the reconstructed images for these various experiments.

4.2 Enhancement

The objective of image enhancement is to improve the visual or perceptual
quality of an image in a certain sense. For example, a simple and well-known
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(a) (b)

(c) (d)

(e) (f)

Fig. 13. Denoising experiments with a Barbara image. (a) Original image. (b)
Noisy image with σ = 20, PSNR=22.15 dB. (c) Restored image using ab-shear,
PSNR=30.38 dB . (d) Restored image using c-hyper, PSNR=30.41 dB. (e) Restored
image using hyper, PSNR=30.49 dB. (f) Restored image using ab-star, PSNR=29.02
dB.
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(a) (b)

(c) (d)

(e) (f)

Fig. 14. Denoising experiments with a Barbara image. (a) Original image. (b)
Noisy image with σ = 50, PSNR=14.20 dB. (c) Restored image using ab-shear,
PSNR=25.59 dB . (d) Restored image using c-hyper, PSNR=25.78 dB. (e) Restored
image using hyper, PSNR=25.35 dB. (f) Restored image using ab-star, PSNR=24.06
dB.
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(a) (b)

(c) (d)

(e) (f)

Fig. 15. Denoising experiments with a Peppers image. (a) Original image. (b)
Noisy image with σ = 20, PSNR=22.15 dB. (c) Restored image using ab-shear,
PSNR=31.82 dB . (d) Restored image using c-hyper, PSNR=31.01 dB. (e) Restored
image using hyper, PSNR=31.28 dB. (f) Restored image using ab-star, PSNR=30.83
dB.
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(a) (b)

(c) (d)

(e) (f)

Fig. 16. Denoising experiments with a Peppers image. (a) Original image. (b)
Noisy image with σ = 50, PSNR=14.20 dB. (c) Restored image using ab-shear,
PSNR=27.98 dB . (d) Restored image using c-hyper, PSNR=27.17 dB. (e) Restored
image using hyper, PSNR=27.33 dB. (f) Restored image using ab-star, PSNR=26.99
dB.
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Table I: Denoising results using Peppers image.

σ Noisy ab-shear c-hyper hyper ab-star NSWT shear NSCT curv

10 28.17 34.28 33.70 33.91 33.45 33.71 34.05 33.81 32.36

20 22.15 31.82 31.01 31.28 30.83 31.19 31.78 31.60 29.65

30 18.63 30.25 29.35 29.72 29.26 29.43 30.13 30.07 28.25

40 16.13 29.01 28.12 28.40 28.04 28.09 28.86 28.85 27.28

50 14.20 27.98 27.17 27.33 26.99 27.04 27.90 27.82 26.46

Table II: Denoising results using Barbara image.

σ Noisy ab-shear c-hyper hyper ab-star NSWT shear NSCT curv

10 28.17 33.47 33.97 33.81 32.29 31.58 33.12 33.01 29.16

20 22.15 30.38 30.41 30.49 29.02 27.23 30.07 29.41 25.46

30 18.63 28.44 28.37 28.53 27.02 25.10 28.16 27.24 24.42

40 16.14 26.93 26.86 26.75 25.55 24.02 26.59 25.79 23.81

50 14.20 25.59 25.78 25.35 24.06 23.37 25.39 24.79 23.33

method to visually improve images with poor intensity is contrast enhance-
ment using histogram equalization.

Since edges frequently contain the dominant information of an image, an ef-
fective way to improve the contrast of the image consists in enhancing the
edges. This approach has been widely used in astronomical and medical imag-
ing and many of the methods employed to this task are based on multiscale
image decomposition. However, in most of these methods, the image is decom-
posed in a separable fashion, without taking full advantage of the geometric
information associated with the edges [34,29]. By contrast, a multiscale de-
composition which is able to take advantage of directional features, such as
curvelets, shearlets or wavelets with composite dilations, is much more effective
in dealing with the edges and other directional information [15,45,41,11]. At
the same time, it is well-known that natural images have their energy strongly
concentrated at low frequencies. Since directional information is related mostly
to mid- and high-frequency components, the lowpass information can hinder
our ability to efficiently capture and analyze these features. Therefore, scale
information needs to be used in conjunction with directional information in
applications where it is important to distinguish features of different sizes. To
this end, in this section, we exploit the directional and multiscale properties
of the newly designed wavelets with composite dilations for a new algorithm
for image enhancement.
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Our approach is based on the usage of a nonlinear mapping function which
amplifies weak edges and suppresses noise. Specifically, we introduce a new
adaptive nonlinear mapping function that incorporates the nonnegative gar-
rote shrinkage functions. This approach provides a good compromise between
hard and soft shrinkage rules and allows one to avoid amplifying noise and
remove small noise perturbations. This nonlinear mapping f is defined as

f(y) =


0 if |y| < T1,

sign(y)T2 + ᾱ(sigm(c(gy − β))− sigm(−c(gy + β))) if T2 ≤ |y| ≤ T3,

y otherwise.

where sigm(y) = (1 + e−y)−1, y ∈ [−1, 1], ᾱ = α(T3 − T2), β ∈ (0, 1), c is a

gain factor, 0 ≤ T1 ≤ T2 < T3 ≤ 1, and gy =
garroteT2 (y)

T3−T2
, with

garroteT2
(y) =

 0, for |y| ≤ T2

y − T 2
2

y
, for |y| > T2

Notice that α can be computed by α = (sigm(c(1− β))− sigm(−c(1+ β)))−1.
Here, β and c determine the threshold and the rate of enhancement, respec-
tively. As can be seen from Figure 17, when the mapping f is applied to
the composite wavelet transform of an image, only the values falling in the
interval [T2, T3] are modified for enhancement, while the values in [0, T1] are
suppressed. These parameters can be adaptively estimated by using the robust
median operator [8] and the noise variance in each subband of the image de-
composition [42]. For example, T1, T2, and T3 for the subband j can be chosen
as pσj, qσj, rσj, respectively, where σ

2 is the noise variance of the input image
and σ2

j is the noise variance of the jth subband and p, q and r are user defined
values. Through this nonlinear function, the values of the transformed image
in each subband can be pointwise modified for image enhancement by

ỹk = ykmaxf

(
yk
ykmax

)
,

where 1 ≤ k ≤ m, yk is the output of the kth channel of the filter bank, and
ykmax is the maximum absolute amplitude of yk.

To summarize, our method for image enhancement using the discrete wavelet
transform with composite dilations consists of the following steps:

(1) Estimate the noise standard deviation in the N × N input image using
the robust median operator [8].

(2) Pass the input image through the analysis part of the filter bank. At this
point, we get a set of m subbands, each corresponding to a given scale
and direction. Each subband contains N2 coefficients.
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(3) For each subband:
(a) Calculate the noise standard deviation [41].
(b) Use the nonlinear mapping function to modify the subband coeffi-

cients.
(4) Pass the modified coefficients through the synthesis part of the filter bank

and reconstruct the enhanced image.
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Fig. 17. Enhancement map: β = 0.20, c = 25, T1 = 0.1, T2 = 0.15, T3 = 0.9.

Even though there is no standard way of evaluating the quality of enhanced
images, a number of metrics have been proposed to quantitative analyze the
enhanced images. One such metric is the Universal Quality Index (UQI) [44].
UQI models image distortion as a combination of three factors: loss of correla-
tion, luminance distortion and contrast distortion. UQI takes values between
-1 and 1, with 1 providing the best estimate of quality. We use this metric
to evaluate the performance of our image enhancement algorithm on different
tilings.

We have compared our method against the NSWT, NSCT and curv. The
same nonlinear map is used for all our tests. In the first set of experiments, we
used the classical Barbara image and the following parameters β = 0.22 and
c = 15. Figures 18(b)-(f) and Figures 19(a)-(b) indicate that our proposed
enhancement algorithm works better using the wavelets with composite dila-
tions developed in this paper than using the NSWT and curv. The ab-shearlet
tiling-based enhancement gives results visually similar to that of NSCT.

In the second set of experiments, the input image is a Zebra image, as shown
in Figure 20(a). For this set of experiments, we chose β = 0.20 and c = 0.15
for this set of experiments. Figures 20(b)-(f) and Figures 21(a)-(b), show the
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(a) (b)

(c) (d)

(e) (f)

Fig. 18. Enhancement experiments with a Barbara image. (a) Original image. (b)
Enhanced using NSWT. (c) Enhanced using ab-shear. (d) Enhanced using hyper.
(e) Enhanced using c-hyper. (f) Enhanced using ab-star.
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(a) (b)

Fig. 19. Enhancement experiments with a Barbara image. (a) Enhanced using
NSCT. (b) Enhanced using curv.

results obtained by various transforms. As we see consistently from all these
figures, the enhancement algorithm based on wavelets with composite dilations
is very effective in enhancing the weak edges and retaining textures while
suppressing the noise. This can be confirmed by looking at the UQI metrics
in Table III.

Table III: UQI results for image enhancement experiments.

Image ab-shear c-hyper hyper ab-star NSWT NSCT curv

Barbara 0.6918 0.7027 0.6953 0.6672 0.6750 0.6923 0.6687

Zebra 0.6538 0.6853 0.6873 0.6827 0.6800 0.6827 0.6820

4.3 Deconvolution Example

When the model of the degradation of an image is described as a convolution
operation, the processing of recovering the original image from the degraded
blurred image is commonly referred to as deconvolution. This inverse processes
is known to be an ill-posed problem.

In this subsection, we give some preliminary experiments that indicate the
ability of using a hyperbolic composite wavelet to better regularize the decon-
volution process. The key point to make is that regularization for this type
of problem is best done by using a representation that can sparsely represent
the image and the convolution operator.

Let γ denote an N × N array of samples from a zero mean additive white
Gaussian noise (AWGN) with variance σ2. In addition, we let the N × N
arrays y and x denote the observed image and the image to be estimated,
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(a) (b)

(c) (d)

(e) (f)

Fig. 20. Enhancement experiments with a Zebra image. (a) Original image. (b)
Enhanced using NSWT. (c) Enhanced using ab-shear. (d) Enhanced using hyper.
(e) Enhanced using c-hyper. (f) Enhanced using ab-star.
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(a) (b)

Fig. 21. Enhancement experiments with a Zebra image. (a) Enhanced using NSCT.
(b) Enhanced using curv.

respectively. When the blurring function is symmetric about the origin and
a reflexive boundary is assumed for the finite discretization of the problem,
the convolution is diagonalizable in a DCT domain. Thus we can write the
deconvolution problem in the DCT domain as

Y (k1, k2) = H(k1, k2)X(k1, k2) + Γ(k1, k2), (7)

where Y (k1, k2),H(k1, k2), X(k1, k2) and Γ(k1, k2) are the 2D DCTs of y, h, x,
and γ, respectively, for 1 ≤ k1, k2 ≤ N.

Figure 22 displays a contour plot of a typical out-of-focus blur in the DCT
domain. Figure 22 also shows the corresponding hyperbolic composite decom-
position when we consider the transform that results when the convolution is
implemented with a reflexive boundary.

Using the regularized inverse operatorHα(k1, k2) = H(k1, k2)/(H(k1, k2)
2 + α)

for some regularizing parameter α ∈ R+, an image estimate in the DCT
domain is given by

Xα(k1, k2) = Y (k1, k2)Hα(k1, k2),

for 1 ≤ k1, k2 ≤ N. This type of regularization applied is often referred to as
Tikhonov-regularization. Let Gj,ℓ denote the DCT of the composite wavelet
filters gj,ℓ for a given choice of j and ℓ. The coefficients of an estimate of the
image for a given regularization parameter αj,ℓ can be computed in the DCT
domain as

Xαj,ℓ
(k1, k2) = Y (k1, k2)Gj,ℓ(k1, k2)Hαj,ℓ

(k1, k2)

for 1 ≤ k1, k2 ≤ N. Taking advantage of the hyperbolic-based decomposition,
we can adaptively control the regularization parameter to be the best suited
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for each hyperbolic supported region. The final estimate is then found by
inverting the composite wavelet transform using these estimated coefficients.

We compared this method against the standard Tikhonov-regularization using
the Barbara image and out-of-focus point spread function shown in Figure 22.
The results are provided in Table IV for various levels of noise given in terms
of the BSNR. For an image of size N ×N , the BSNR is defined in decibels as

BSNR = 10 log10

(
∥(x ∗ h)− µ(x ∗ h)∥22

N2σ2

)
,

where µ(x ∗ h) denotes the mean of x ∗ h.

Fig. 22. The image on the left is the out-of-focus point spread function displayed
in the DCT domain. The image on the right is the decomposition based on the
hyperbolic composite wavelet when implemented by convolution with a reflexive
boundary.

Table IV: Deconvolution results using the Barbara image.

BSNR 30 35 40 45

hyper 25.90 27.41 29.09 31.12

Tik 24.86 26.04 27.76 29.73

Our experiments emphasize the importance of having novel hyperbolic-based
decompositions schemes for the problem of deconvolution. It si clear that there
are other blurring functions that exhibit patterns containing valleys (low mag-
nitude values) that follow a hyperbolic distribution. The point to make is that
better regularization is possible when the image representation is sufficiently
sparse, since it enables a superior control of the regularization parameters by
isolating the locations of the valleys. A more complete study of this concept
will be left to future work.
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5 Conclusion

In this paper, we have demonstrated the potential of the framework of wavelets
with composite dilations to construct and implement directional multiscale
representations which are specifically designed to deal with edges and other
anisotropic features with high efficiency. A new discrete method for decompos-
ing images using this approach was devised that is much more flexible and so-
phisticated than previous design concepts. In fact, this new method succeeded
to produce novel and useful constructions such as the hyperbolic decomposi-
tion. This was possible because our new filter bank construction follows di-
rectly from the generating structure. Not only does this design method follow
faithfully from the theoretical framework, but it also enables one to obtain
very sophisticate geometrical decompositions of the spatial frequency plane.
Our new discrete transforms even improve upon the original implementation
of the discrete shearlet transform, whose advantages in denoising and other
imaging applications have been established in previous works. The numerical
demonstrations included in this paper show that our new discrete transforms
perform consistently better than similar directional multiscale transforms with
respect to image denoising and enhancement.
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6 Appendix

Below is a Matlab-based pseudo-code to generate the hyperbolic composite
wavelet filters restricted to the fourth quadrant. The complete filters are found
by adding the appropriate flip with zero padding. Let N0 be the quadrant size
of the image and k ≥ 2 to be a multiplier to determine the number of sequence
elements. Hr and Ht will denote the window functions for the radial and time
parameters.
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N = kN0;
k1 = 1/2; k2 = 1/k1;
r = linspace(k1, k2, N);
t = linspace(2, 0, N);
xs = [ ];ys = [ ];
for i = 1 : N ,

x =
√

r(i). ∗ λt;
y =

√
r(i). ∗ λ−t;

xs = [xs(:)′ x(:)′];
ys = [ys(:)′ y(:)′];

end

for j = j0 : j1,

Aj =

√
2
j

0

0
√
2
j

;

for l = l0:l1,

Bl =

λl 0

0 λ−l

;

η = [xs(:) ys(:)](AjBl);
η1 = η(:, 1);η2 = η(:, 2);
G = zeros(N0);
Gweight = zeros(N0);
ci = 0;
cit = 1;
for jl = 1 : N ,
η1 = ⌈η1(jl)⌉;
η2 = ⌈η2(jl)⌉;
ci = ci + 1;
if η1 <= N0,
if η2 <= N0,
Gweight(η1, η2) = Gweight(η1, η2) + 1;
G(η1, η2) = G(η1, η2) +Hr(ci)Ht(cit);

end
end
if ci = N ,
ci = 0;
cit = cit + 1;

end
if cit > N
cit = 1;

end
end
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Ĝweight = Gweight(1 : N0, 1 : N0);

Ĝ = G(1 : N0, 1 : N0);
if ∥Ĝ∥1 > 0
[i0, j0, nG] = find(Ĝweight);
avg = 1./nG;
P = sparse(i0, j0, avg,N0, N0);
Ĝi,l = Ĝ. ∗ P ;

end
end

end
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