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The Chirplet Transform: Physical Considerations®

Steve Mann'and Simon Haykin?

Abstract

We consider a multidimensional parameter space
formed by inner products of a parameterizable
family of chirp functions with a signal under
analysis. We propose the use of quadratic chirp
functions (which we will call q-chirps for short),
giving rise to a parameter space that includes
both the time-frequency plane and the time-scale
plane as two-dimensional subspaces. The param-
eter space contains a “time-frequency-scale vol-
ume”, and thus encompasses both the short-time
Fourier transform (as a slice along the time and
frequency axes), and the wavelet transform (as a
slice along the time and scale axes).

In addition to time, frequency, and scale,
there are two other coordinate axes within
this transform space: shear-in-time (obtained
through convolution with a g-chirp) and shear-
in-frequency (obtained through multiplication by
a g-chirp). Signals in this multidimensional
space can be obtained by a new transform which
we call the “g-chirplet transform”, or simply the
“chiplet transform”.

The proposed chirplets are generalizations
of wavelets, related to each other by two-
dimensional affine coordinate transformations
(translations, dilations, rotations, and shears)
in the time-frequency plane, as opposed to
wavelets which are related to each other by one-
dimensional affine coordinate transformations
(translations and dilations) in the time-domain
only.

1 INTRODUCTION

Underlying a great deal of traditional signal processing
theory is the notion of a sinusoidal wave. With the ad-
vent of modern computing, and the Fast Fourier trans-
form, the use of and interest in frequency-domain signal
processing has increased dramatically. More recently, how-
ever, researchers are becoming aware of the limitations of
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frequency-domain methods. Although the Fourier trans-
form yields perfect reconstruction of a broad class of sig-
nals, it does not necessarily provide a meaningful inter-
pretation when the signals lack global stationarity. For
example, consider the time series formed by a typical pas-
sage of music. An estimate of its power spectrum tells us
which musical notes are present (how much energy there is
around each of the frequencies), but fails to tell us when
each of those notes was sounded.

Much of the recent focus of signal processing is on the
so-called time-frequency (TF) methods, which allow us to
observe how a spectral estimate evolves over time. One
of these TF methods, the short-time Fourier transform
(STFT), has been used extensively for analyzing speech,
music, and other non-stationary signals.

Suppose we want to perform a STFT analysis, but are
uncertain what the window size should be. We could per-
form the STFT of a signal, s(t), using a window of rela-
tively short duration, then stretch the window out a small
amount and compute another STFT, and so on, gradually
increasing the window size and computing another STFT
for each value of window size. Stacking uncountably many
of these STFTs on top of one another results in a contin-
uous volumetric representation of s that is a function of
time, frequency, and the size of the window (Fig. 1(a)).
We will refer to this volumetric representation as the time-
frequency-scale (TFS) transform®.

Another time-frequency representation (which might
more appropriately be called a time-scale representation)
is the well-known wavelet transform [2], [3], [4], [5]. The
wavelet transform can be expressed as an inner product of
the signal under analysis with a family of translates and
dilates of one basic primitive. This primitive is known
as the mother wavelet. A member of the wavelet family
is produced by a particular one-dimensional affine coordi-
nate transformation acting on the time axis of the mother
wavelet; this geometric transformation is parameterized by
two numbers (corresponding to the amounts of translation
and dilation). The continuous wavelet transform is formed
by taking inner products of the signal with the uncount-

!When using a multidimensional parameter space, it is
often impossible to establish frame bounds [1] on the en-
ergy in the parameter space. With only one parameter, we
cannot always reconstruct the signal. With two effective
parameters, we can reconstruct the signal, and also bound
the energy of the representation. With three or more pa-
rameters, the energy in the transform space will be infinite.
To the extent that multi-dimensional parameter spaces are

still useful, we will not let this infinite energy hinder our
progress.



t Frequency

A BB R BN Y P

(LT

o 1 Time

1/Scale
€Y

Figure 1: Volumetric family of short-time Fourier transforms.
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(a) A family of uncountably many STFTs where the window is allowed

to dilate continuously gives us a “time-frequency-scale” (TFS) transform. The bottom plane, f. = 0, is the time-scale plane which is a

continuous wavelet transform if g € L2(IR) is a suitably chosen mother wavelet. Here we only show one octant of the volume. Note also

that the plane 1/s = 0 is not defined, for it would correspond to infinite scale.

(b) Sheared STFTs with a variety of assumed chirprates.

Shearing of the TF plane is performed through multiplication of the signal by a chirp, with chirprate ¢. If we stack up uncountably many
such TF planes, allowing ¢ to vary continuously, the result is a “time-frequency-chirprate” (TFC) transform.

ably many members of the two-parameter wavelet family.
The continuous wavelet transform is, with an appropriate
choice of window/mother-wavelet, simply the time-scale

(TS) plane of the TFS volume (Fig. 1(a)).

We begin to see that, even if it is not practical from
a computational or data-storage point of view, the time-
frequency-scale space is useful from a conceptual point
of view. In particular, if we only desire the magnitude
TFS volume, we can easily extract this information from
the Wigner distribution, by the appropriate coordinate
transformations and uniform smoothing of the coordinate-
transformed Wigner distributions. A continuous transition
from the magnitude TF plane (spectrogram) to the magni-
tude TS plane (scalogram) is possible through appropriate
smoothing of the Wigner distribution [6].

Now suppose we were to multiply the signal, s(t), by
a linear FM (chirp) signal exp(j27r§t2) and then compute
its STFT. If we vary the chirp rate, ¢, continuously, and
repeat the process uncountably many times, stacking the
resulting STFT's one above the other, we obtain a different
three-dimensional volume (Fig. 1(b)). This time we have
a function of time, frequency and chirprate.

Of course there is no reason to limit ourselves to
a choice between these two parameter spaces; to mo-
tivate what follows, it will prove helpful to keep in
mind a continuous four-dimensional “time-frequency-scale-
chirprate®” (TFSC) parameter space.

®Traditionally, the term chirp-rate (with a hyphen) is
used, but in this paper, we use the single word “chirprate”,
to avoid confusion arising out of hyphens in compounded
parameter lists.

1.1 Historical Notes

In 1946, in his seminal paper on communication theory [7],
Gabor (who later won the Nobel prize for his work on
holography), provided a new interpretation of the one-
dimensional Gaussian-windowed STFT and examined the
time-frequency plane in terms of a two-dimensional tiling.
Although Gabor’s development was not completely rigor-
ous (and, in fact his representation was later shown to be
unstable [1]), his notion of a time-frequency tiling was a
very significant contribution. Gabor referred to the ele-
ments of his tiling as logons.

Beginning around 1956, Siebert began to formulate a
radar detection philosophy with some particularly useful
insights in terms of time-frequency [8][9]. Much of his
insight was obtained through the use of Woodward’s un-
certainty function [10], also known as the radar ambiguity
function[11] or the Fourier- Wigner transform [12]. Siebert
also considered chirping functions for pulse compression
radar, and studied these in detail, observing that chirp-
ing in the time domain gives rise to a shearing in the
time-frequency plane (or equivalently, a shearing in the 2D
Fourier transform of the time-frequency plane).

In 1985, Grossman and Paul [13] rigorously formulated
some of these important ideas in terms of affine cannonical
coordinate transformations to a coherent space represen-
tation. They also considered two-parameter subgroups of
these affine coordinate transformations.

Papoulis, in his book[14] described the use of a linear
frequency-modulated (chirped) signal as the basis of an
ordinary Fourier analyzer, and also presented the chirped
signals as shearing operators in the time-frequency plane,
foreshadowing the development of the chirplet transform.

In 1987, Jones and Parks [15] formulated the prob-
lem of window selection in terms of time-frequency leak-



age. They made an important connection between the
work of Szu and Blodgett [16] who showed that frequency
shearing is accomplished through multiplication by a chirp,
and the work of Janssen [17] who proved that any area-
preserving affine coordinate transformation of the time-
frequency plane yields a valid time-frequency plane of some
other signal, though they were unaware of Siebert’s ear-
lier unpublished work. In a simple and insightful example,
Jones and Parks showed the time-frequency distribution of
both a Hamming window and a chirped Hamming window,
one being a sheared version of the other.

Berthon [18] proposed a generalization of the radar am-
biguity function based on the semi-direct product of two
important groups:

e the special linear group, SL(2,IR) that embodies shear
in the time-frequency plane, and

e the Heisenberg group that involves both time and fre-
quency shifts.

In 1989 and early 1990, we formulated the chirplet
transform, a multidimensional parameter space whose co-
ordinate axes correspond to the pure parameters of pla-
nar affine coordinate transformations in the time-frequency
plane. (This formulation was motivated by a discovery
made by the senior author and his research associates,
namely, that the Doppler radar return from a small piece
of ice floating in an ocean environment is chirp-like[19].)
We also formulated a variety of new and useful transforms
that were two-dimensional subspaces of this multidimen-
sional parameter space. Furthermore, we suggested using
the work of Landau [20][21][22][23][24][25] who introduced
prolate spheroidal functions, and we noted their signifi-
cance in the context of the shearing phenomenon in the
time-frequency plane, as they form idealized parallelogram
tilings of this plane.

Later, we applied the chirplet transform and some of
the new two-dimensional subspace transforms to prob-
lems in marine radar and obtained results that were bet-
ter than previous methods, so we published these find-
ings [26]. Independently, at around the same time (ironi-
cally, only a few days later) Mihovilovic and Bracewell also
presented a related idea [27] (iromically, using the same
name, “chirplets”), though not in the same level of gener-
ality of the multidimensional parameter space. Later they
also presented a practical application of chirplets [28].

A point that needs to be emphasized here is that there
is more to the chirplet transform than just the shear phe-
nomenon. In particular, time-shear and frequency-shear
are examples of affine coordinate transformations — map-
pings from the TF-plane to the TF-plane — while the
chirplet transform is a mapping from a continuous func-
tion of one real variable to a continuous function of five (or
six) real variables.

In 1991, Torresani [29] examined some relations that
were intermediate between the affine and the Weyl-
Heisenberg groups. The work of Segman and Schempp [30]
incorporates scale into the Heisenberg group, and the work
of Wilson et al. [31][32] examines the use of a TFS repre-
sentation that they call the multiresolution Fourier trans-
form.

Baraniuk and Jones studied several “chirplet trans-

form subspaces” and made precise some of the mathe-
matical details of the two-dimensional chirplet transform
subspaces [33]. They also provided an alternative deriva-
tion [33] of the chirplet transform, based on the Wigner dis-
tribution. This derivation involved noting, as we did, that
each point in the analysis space of the chirplet transform
corresponds to a particular operator in the time domain.
This time-domain operator acting on the analysis primi-
tive (‘mother chirplet’) also has, associated with it, a 2-D
area-preserving affine coordinate transformation in the TF
plane. Baraniuk and Jones also addressed discretization
issues [33][34].

Recently, researchers have considered fractional Fourier
domains and their relation to chirp and wavelet trans-
forms[35].

1.2 RELATED WORK

Early on, our interest in chirping analysis functions was
motivated by a different kind of chirping phenomenon:
chirping due to perspective. Our urban or indoor world
contains a plethora of periodicity, repeating rows of bricks,
tiles, windows, or the like abound, yet pictures of these
structures fail to capture the true essence of this period-
icity. When photographed at an oblique angle (where the
film plane is not necessarily parallel to the planar surface),
these surfaces give rise to an image whose spatial frequency
changes as we move across the image plane. The distant
bricks will appear smaller and smaller as we move toward
the vanishing point which may be defined to be the point
of infinite spatial frequency. Owur first generalization of
the wavelet transform was to take the “zooming-in” prop-
erty of wavelets and extend it to panning and tilting, to
model the movements of a camera. Our interest in radar,
however, drew us toward processes that are more accu-
rately analyzed by linear-FM chirplets. We realized that,
listening to radar sounds from marine radar, automobile
traffic radar, and the like, that in many cases there was a
strong “chirping”, and so the usual Fourier Doppler meth-
ods seemed inappropriate in these cases. In particular,
the warbling sound of small iceberg fragments suggested
that we should consider alternatives to windowed harmonic
oscillations and the like (e.g. alternatives to waves and
wavelets).

Of the many different kinds of chirping analysis prim-
itives possible, we may distinguish two families of anal-
ysis primitives that are of particular interest in practice:
the “projective chirplet” (p-chirplet), and the “quadratic
chirplet” (g-chirplet), the latter being the one described in
this paper. These two forms have been presented in a com-
bined fashion with the “time-frequency perspectives” [36],
which is a more general chirplet that has eight parame-
ters. The resulting eight-parameter signal representation
includes the “projective chirplet transform” as one five-
parameter subspace, and the “quadratic chirplet trans-
form” (e.g. the one presented in this paper) as another
five-parameter subspace with the time, frequency, and di-
lation axes being common to both of these two subspaces.
Computational issues have yet to be addressed, although
special-purpose hardware has been proposed [37] with an
emphasis on use of FFT-based hardware.

We have also constructed other chirplet transforms,



such as a three-parameter Doppler chirplet representation
that models a source producing a sinusoidal wave, while
moving along a straight line (e.g. a train whistle). The
three parameters are center-frequency, maximum rate of
change of frequency, and frequency swing. Also, a log-
frequency chirplet has been formulated where the underly-
ing chirps appear as straight lines in the time-scale plane.

Generalizations of the STFT and wavelet transform,
that make use of chirping analyzing functions, have been
previously suggested [26], [27], [38], [39], [40], [36], [41], [28].
Comparisons between traditional TF methods and
chirplets have also been made, in the context of practical
applications in both radar [26], [42], and geophysics [28].

1.3 Overview

This paper is devoted to physical (intuitive) considerations
of the chirplet transform. It is organized as follows:

o We first introduce chirping analysis functions
which may be thought of as generalized wavelets
(“chirplets”).

o We then generalize Gabor’s use of the Gaussian win-
dow for his tiling of the time-frequency plane. This
generalization gives rise to the four-dimensional time-
frequency-scale-chirprate (TFSC) parameter space.

e We next consider non-Gaussian analysis functions,
giving rise to a five-dimensional parameter space.

o We then consider the use of multiple analyzing
wavelets/windows, first to generalize Thomson’s
method of spectral estimation to the TF plane, and
then to further generalize this result to the chirplet
transform. The multiple analyzing wavelets/windows
(which we call “multiple mother chirplets” when they
are used in the latter context) collectively act to de-
fine a single “tile” in the TF plane, corresponding to
each point in the chirplet transform parameter space.
Such a tile has a true parallelogram-shaped TF distri-
bution whose shape is governed by the six 2-D affine
parameters.

o We generalize autocorrelation and cross-correlation
by using the signal itself (or another signal) as a
“mother chirplet”. In other words, we analyze the
signal against chirped versions of itself (or against
chirped versions of another signal).

e Finally, we consider chirplet transform subspaces,
leading to a variety of new transforms.

2 THE CHIRPLET

The STFT consists of a correlation of the signal with
constant-size portions of a wave, while the wavelet trans-
form consists of correlations with a constant-Q family of
functions. The two transforms, however, are in some ways
similar. Although the former is generally thought of as a
time-frequencymethod, and the latter, a time-scale method,
both attempt to localize the signal in the time-frequency
plane. In a rather loose sense, both the modulated window
of the STFT, and the wavelet® of the wavelet transform,

3The term “wavelet” will appear in quotes when it is
used in this less restrictive sense. In particular, a “wavelet”

may be regarded as “portions of waves”. Chirplets, in a
similar manner, may be regarded as “portions of chirps”.
We generally use complex-valued chirplets to avoid the mir-
roring in the f = 0 axis that results from using only real-
valued chirplets.

Figure 2 provides a comparison in terms of real and
imaginary components as well as time-frequency distribu-
tions, between a wave, wavelet, chirp, and chirplet. In
Fig. 3, we provide the same comparison with a 3-D particle-
rendering, where the three coordinate axes are the func-
tion’s real value, imaginary value, and time. Discrete
samplings of four chirplets are shown: the top two have
chirprate set to zero, and the leftmost two have an arbi-
trarily large window.

2.1 Gaussian Chirplet

The chirplets in Fig. 2 and Fig. 3 were derived from a single
Gaussian window by applying simple mathematical opera-
tions to that window. The window may be thought of as
the primitive that generates a family of chirplets, much like
the mother wavelet of wavelet theory. We will, therefore re-
fer to this primitive (whether Gaussian or 0therwise4) as
the “mother chirplet”, and will denote it by the letter g.

A Gaussian wave packet (also known to physicists as
simply a wave packet), is a wave with a Gaussian envelope.
Mathematically, a wave packet, g, may be represented:

1 lot=te _ .
21—0’8_%( T )26J27"f6(t tc)tjo (1)
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where j = /=1, t. € IR is the center of the energy concen-
tration in time, f. € IR is the center frequency, o € IR > 0
is the spread of the pulse, and ¢ € IR is the phase shift of
the wave, which we will not consider as one of the parame-
ters. The subscripts of g represent the degrees of freedom,
which comprise the parameter list.

We like the wave packet to have unit energy. Hence we
reformulate the definition of the Gaussian envelope (taking
advantage of the fact that a Gaussian function raised to any
exponent, in our case, 1/2, is still a Gaussian function if
multiplied by the appropriate normalization constant):

. 1 1,t—t.. . ..
teolt) = exp (—3()2 ) exp(i2as(t - 1))
2o 20 o
1

= ———exp (—%(t;fc )2)6XP(j27ch(t — tc))

VVTA:
(2)

where A; = \/50.

Theoretically bandlimited signals have infinite dura-
tion, but it is customary, in electrical engineering, to use
the 3dB bandwidth which is defined as the difference in fre-
quencies, on either side of the peak, where the energy or
power falls to half the peak value. This definition, how-
ever, is not theoretically motivated, nor particularly useful
in our context. Therefore, in the case of the wave packet,
we simply define the duration to be equal to Ay in (2). By

will be permitted to have a non-zero DC component.
*In general, g(t) is a complex-valued function of a real
variable, and has finite energy: g € L*(IR).
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Figure 2: Relationship between wave, “wavelet” | chirp and chirplet,
in terms of time series and magnitude time-frequency (TF') distribu-
tions. The “wavelet” provides a tiling the TF plane with tiles that
are lined up with the time and frequency axes, while the chirplet per-
mits us to construct a more general tiling of the TF plane because
the tiles may rotate or shear. More generally, each of these four
functions is actually a chirplet. For example, the wave is a special
case of a chirplet where the chirprate is zero and the window size is
arbitrarily large. Note the use of a bipolar frequency axis, since we
often wish to distinguish between positive and negative frequency
components. Figure reproduced from [26]; used with permission.

WAVELET

CHIRPLET

Figure 3: Wave, “wavelet”, chirp, and chirplet re-visited. The x-
axis corresponds to the real value of the function, and the y-axis
to the imaginary value. Though the functions are continuous, a
coarse sampling is used to enhance the 3-D appearance. Each sam-
ple is rendered as a particle in (z,y,t) space. (WAVE) The wave
appears as a 3-D helix. The angle of rotation between each sample
and the next is constant, hence the frequency, which is the rate of
change of phase with respect to time, is constant. (WAVELET)
The “wavelet” is a windowed wave, where the reduction in ampli-
tude is observed as a decay toward the ¢ axis. The angle of rotation
between each sample and the next is still constant. (CHIRP) The
chirp is characterized by a linearly increasing angle of rotation be-
tween one sample and the next. Note the increased particle density
at the origin. (CHIRPLET) The chirplet is characterized by the
same linearly increasing angle of rotation, but with first a growing
and then a decaying amplitude.



the reciprocal nature of A; and Ay, we are also implicitly
specifying the bandwidth.

In (2), we can identify the Gaussian part as an envelope,
which is modulated by a harmonic oscillation. The family
of Gaussian chirplets is given by replacing the harmonic
oscillation (wave) with a linear FM chirp:

. 1 _lo_t 2 )2 _
gtcychog(At)vC(t) = € 2(A1) 6]2W(C(t tC) +fC(t tC))

VA
(3)

where we have used a logarithmic scale for the duration so
that the unit width (default) is represented by a parameter
of zero. Whenever a parameter is missing from the param-
eter list, we will assume it to be zero. For example, if only
three parameters are present, we assume zero chirprate; if
only two are present, we also assume that the log-duration
is zero (log(A;) = 0). Summarizing, the Gaussian chirplet
(3) has four parameters: time-center, ¢.; frequency-center,
fe; log-duration, log(A;); and chirprate, c.

2.2 Notation

The family of chirplets is generated from the mother
chirplet by applying simple parameterized mathematical
operations to it. The parameters of these operations form
an index into the chirplet family.

The operations corresponding to the coordinate axes
of the chirplet transform parameter space are presented in
Table 1. The operators will be explained as they are used.
The general notion to keep in mind is that any combina-
tion of these operators results in a 2-D affine coordinate
transformation in the TF plane, which may be represented
using the homogeneous coordinates often used in computer
graphics [43].

The continuous STFT may be formulated as an inner
product of the signal with the family of functions given in
(2): , ,

Stc.fe = (Gte,fetog(an]s(t)) (4)
where Ay is a suitably-chosen (fixed) window size, and s(t)
is the original signal. We use the Dirac innner product
notation, defined by:

(als) = / o ()s(1) dt (5)

o]

where g* denotes the complex conjugate of g. We use the
vertical bar between the arguments and absorb the conju-
gation into the first element so that we can write (g| by
itself, as an operator that acts on whatever follows, in this
case the signal, |s).

Suppose we take the Gaussian window, centered at ¢ =
0, with unit pulse duration, as given by:

9(1) = —= exp(—51") (6)

ﬁ“

We denote a time shift to the position t., with an oper-

ator that has a multiplicative law of composition:
te

(Table 1). A frequency shift to the position f. consists of
multiplying the window by exp(j2x fct), which we will de-

note f . The single-operator notation (Table 1, second

column) consists of a pictorial icon depicting the effect each
operator has on the TF plane, even when the operator is
acting in the time-domain. For example the symbol with
the two up-arrows indicates a uniform upward shift along
the frequency axis, of the time-frequency plane, for positive
values of the parameter. These pictorial icons are consis-
tent with our observation that each of these operators acts
in the time domain to perform an area-preserving affine”
coordinate transformation in the time-frequency plane.

Using the new notation, we can re-write (4) as:

ser= (], [11],4) m

where we have also eliminated the time coordinate, recog-
nizing that for any operator in the time-domain, there is an
equivalent operator in the frequency domain, or in the TF
plane, or in whatever other reasonable coordinate space one
might wish to work in. The multiplicative law of composi-
tion of the operatorsis applied in the order that they ap-

pear from right to left (e.g. f is applied first, and then

is applied to that result). Note that these two opera-
te

tors do not commute. Adopting the convention of applying
the frequency-shift first, and then the time-shift, results in
the term ¢ — ¢, appearing in the second exponent of (2).
Applying the operators in the reverse order would result in
a different phase-shift. In order to form a true group, we
need a third parameter, ¢, to indicate the degree to which
the two operators do not commute. Such a group struc-
ture is known as the Heisenberg group [12]. If we are only
interested in the magnitude of the TF plane (e.g. the spec-
trogram) then we can simply consider the two-dimensional
(two-parameter) translational group, and describe the op-
erations in terms of this simpler group. Both (4) and (7)
are equivalent, providing us with some measure of the sig-
nal energy around coordinates (t., f.), but (7) emphasizes
the fact that the STFT is a correlation between members
of a two-parameter family of time-shifted and frequency-
shifted versions of the same primitive, g.

Using the simplified law of compostion, we may com-
pose a time shift by ¢. with a frequency shift by f., as

follows:
t f = C10,0,0,0,0C0,f,,000 = Cio fe (8)

where omissions from the parameter list of C indicate val-
ues of zero.

Equation 7) may be re-written, using the “Composite
notation” (Table 1, third column):

Sis. = <ctc,fcg(t) s(t)> (9)

®Segal [44] and others sometimes refer to these coor-
dinate transformations as symplectomorphisms. 1t is well-
known [12], [45] that the actual geometry of phase space is
symplectic geometry, and that it is a coincidence that SP»
corresponds to area-preserving affine geometry. Therefore,
we must keep in mind, that if we desire to extend our think-
ing to the analysis of signals of dimension n > 1, then we
must consider the symplectic geometry of SPs,.



Table 1: Operators corresponding to the coordinate
axes of the chirplet transform parameter space

Description 1-parameter Composite Time-domain
notation notation g(t)
Time-translation g(t) = Ci,0,0,0,0 9g(t) =g(t—t.)
te
Frequency-translation f g(t) = Co,.,0,0,0 g(t) = eI ety (1)

Time-dilation /Freq.contraction

— A
t
=] 0w

=Co,0,105(81),00 9(1) | = /—lAtlg(At)

Cg(f)

Frequency-shear

= C0,0,0,¢,0 9(1)

Time-shear

EN0

= C0,0,0,0,d 9(1)

2.3 Time-Frequency-Scale Volume

The STFT is a mapping from a one-dimensional func-
tion (the domain, which is a function of time) to a two-
dimensional function (the range, which is a function of
time and frequency). Now suppose, rather than holding
Ay constant (4), we also allow it to be a parameter. The
new mapping we so obtain is a mapping from the one-
dimensional domain (time) to a three-dimensional range
(time, frequency, and log-scale) that we previously referred
to as the TFS parameter space® (Fig. 1(a)).

2.4 Gaussian Chirplet Transform (GCT)

We can further extend the multidimensional parameter
space. Suppose we also allow the chirprate, ¢, in (3) to
be one of the coordinates of the parameter space. The
resulting transform is given by:

S(f)>

We refer to (10) as the “Gaussian chirplet transform”
(GCT).

One characteristic of the one-dimensional Gaussian
window is that its TF energy distribution is a bi-variate
Gaussian function. Therefore its TF energy countours are
elliptical, so shearing the TF distribution along the time
axis provides no new degrees of freedom that cannot be
obtained by combinations of shearing along the frequency
axis together with dilation. If we consider other windows,
however, we do not, in general, have this degenerate prop-
erty.

Stc,fc,log(At),c = <CtCVfCVAtVCg(t) (10)

SNote that, if we were interested in exploiting the phase
of this representation, we would need to add a fourth pa-
rameter, to account for the extent to which the operators
do not commute.

2.5 Continuous Chirplet Transform

(CCT)

We have been using the frequency shear operator, which we
obtained through multiplication by a linear FM chirp. In
a dual manner, we may introduce the time shear operator
(Table 1, last row) which we obtain by convolving with a
linear FM chirp.

Fourier transformation of a chirp, with chirprate, d,
produces another chirp which has chirprate —1/d. Thus
convolution of a signal, s(t¢), with a chirp, having chirprate
d is equivalent to multiplying S(f) with a chirp of rate
—1/d, and taking the inverse Fourier transform of the prod-
uct. In short, we have rotated the TF plane 90°, sheared
it left-right, and rotated it back. This three-step process
has the net effect of shearing the TF plane top-bottom.

The full continuous chirplet transform (CCT) is defined
in the same manner as (10):

S(t)> (11)

Siefolog(At)e,d = <th,fc,At,c,d9(t)

except that we have one new operator, time-shear, that is
composed with the other four operators.

Again, the law of composition [46] of any two chirplet
operators (multiplicatively) follows by virtue of the fact
that both represent affine coordinate transformations of

the TF plane.

The intuition behind (11) is that entries in the first
column of Table 1 simply represent the coordinate axes of
the multidimensional parameter space, and their subscripts
represent the distances along these axes.

Segal exploited various coordinate transformations in
the TF plane in the development of his theory of dynamical
systems of infinitely many degrees of freedom [47]. His
harmonic map or oscillator map, as he called it (the Segal
Shale Weil representation [48]), is indeed related to the
chirplet transform.



2.6 Multiple Mother Chirplets: The
Prolate Chirplets

2.6.1 Thomson’s method of spectral estimation

Thomson’s multiple window method of spectral esti-
mation [49] provides a very good estimate of the power
spectrum by measuring the energy contained within a col-
lection of rectangular” shaped frequency intervals. The
spectral estimate is formulated by averaging together, with
appropriately chosen weightings (the eigenvalues), multiple
power spectral estimates, each computed with a different
window.

The windows comprise a family of discrete prolate
spheroidal sequences (DPSS), have been studied exten-
sively (Landau, Pollack, Slepian [20], [21], [22], [23], [24])
and are commonly referred to as prolates or Slepians.

The remarkable property of this family of windows is
that their energy contributions add up in a very special way
that collectively defines an ideal (ideal in the sense of the
total in-bin versus out-of-bin energy concentration) rect-
angular frequency bin. Furthermore, for a time series of a
given length, the power spectrum may be estimated at var-
ious resolutions (e.g. we can choose the frequency bin size).
While it might at first seem unclear why one would want
anything other than the highest resolution, the Thomson
method allows us to trade resolution for improved statisti-
cal properties (reduced variance of the spectral estimate).
Often, much of the fine structure of a spectral estimate is
due to noise. It should be stressed that while other meth-
ods of spectral estimation (such as the Welch [50] method)
exist, the Thomson method is particularly noteworthy for
its precisely defined rectangular frequency bins.

Generally, the Thomson method is thought of as a mul-
tiple window method, but another way of thinking of the
Thomson method is by the way that the energy in each
frequency bin is calculated. To determine the quantity of
energy inside the bin centered at f., we frequency-shift
each of the windows to f., and sum the energy contribu-
tions from each of the frequency-shifted windows:

S(fe) = Z ‘<Co,fc,0,0,ogz‘ s>

Writing the Thomson method in this way, we can gener-
alize it further by replacing the one-parameter operator,
Co,f.,0,0,0, with multi-parameter operators.

2

(12)

2.6.2 True rectangular tiling of the TF plane

While many researchers depict certain tilings of the TF
plane (such as given by the STFT), schematically, using
rectangular grids [7], and even refer to them as rectangular
tilings, 1t is important to note that the actual shape of
the individual tiles is better described as a tesselation of
overlapping “blobs”, perhaps Gaussian, as was the case

with the Gaussian-windowed STFT.

"The term “rectangular” is used here in the context
of “rectangular window”, meaning a 1-D function that is
unity in a certain frequency interval and zero outside that
interval, not to be confused with our later use of “rectangu-
lar” which will be more consistent with its everyday usage
to specify a 2-D shape.

However, the same family of discrete prolate spheroidal
sequences (DPSS) used in the Thomson method synthe-
sizes a concentration of energy in the TF plane where the
energy is uniformly distributed throughout one small rect-
angular region, and minimized elsewhere®.

Observing this fact (others have also observed this
fact [48]), we now extend the Thomson method to oper-
ate in the TF plane. In practice, we calculate a discrete
version from the discrete-time signal, simply by partition-
ing the signal into short segments and applying the Thom-
son method to each segment. This amounts to a sliding-
window spectral estimate where the entire family of win-
dows slides together. As in (12), however, we may write
the proposed time-frequency distribution, pointwise. That
is, to calculate the energy within a rectangle centered at
(e, fc), we sum over the set of windows that have all been
moved to the point (., fe):

S(te, fo) = Y KCrergogi | ) (13)

2.6.3 Pyramidal (multiresolution)
true-rectangular TF tiling

The area occupied by a particular family of DPSS is
just the time-bandwidth product and is denoted by the let-
ters NW (the notation used by Thomson and others). The
quantity N denotes the number of samples (duration) of
a window, and W denotes the bandwidth collectively de-
fined by a plurality of such windows of equal length. We
can compute the TF plane, of a particular signal, at any de-
sired value of NW, by using the discrete prolate sheroidal
sequences (subject to the constraints that NW can only
be adjusted in integer increments, and that it also has a
lower bound dictated by the uncertainty relation [51]). If
we compute the TF plane at each possible value of NW,
and stack these one above the other (Fig. 4), we obtain a
3-parameter space, where the axes are time, frequency, and

resolution (1/NW).

Hierarchical or pyramidal [52] representations have
been previously formulated, in the context of image pro-
cessing, using multiple scales in the physical domain (e.g.
spatial scale). The proposed multi-resolution TF represen-
tation, however, is new. In particular, here the scale axis
is NW — the area of the rectangular tiles at each level of
the pyramid. Here the scale is in the time-frequency plane,
not the physical (time or space) domain.

At this point, a reasonable question to ask might be:
Why vary the area; do we not always desire maximum res-
olution or maximum concentration in the TF plane? The
same answer we gave earlier, regarding smoothed spectral
estimates, applies here.

Smoothing is well-known in time-frequency analysis,
particularly with the Wigner distribution where we wish
to reduce or eliminate cross terms. Many smoothing ker-
nels have been proposed [53][54]. Each of these smoothing
kernels has a particular shape and many of these are op-
timum in one sense or another. The use of the DPSSs,
however, has been shown to be equivalent to a rectangular

8In actual fact, there is a small amount of frequency
smearing, but zero time smearing, as the energy is entirely
contained in the time interval under consideration.
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Figure 4: Three dimensional parameter space based on the use of
multiple windows. This pyramidal representation may either be
computed by applying the appropraite set of DPSSs to compute
the “true-rectangular TF tiling” at each level, or alternatively, by
computing a pyramid from the TF (Wigner) distribution of the sig-
nal. In the latter case, the TF pyramid is computed in much the
same way that Gaussian pyramid of an image is computed, except
using a rectangular filter rather than a Gaussian filter.

smoothing of the Wigner distribution [48], and therefore
deserves special attention, particularly when we wish to
describe a tiling of the TF plane in a very simple way.

We may use the result of Shenoy and Parks [48] to gen-
eralize the pyramidal true-rectangular TF tiling further, by
smoothing the TF distribution with a continuously variable
rectangle size. When uncountably many of these rectangu-
lary smoothed TF planes are stacked, one above the other,
a continuous volumetric parameter space results, having
parameters time, frequency, and resolution.

2.6.4 Parallelogram-shaped tilings of the TF
plane

The method of multiple windows may be extended fur-
ther to the chirplet framework.

This further extension makes use of the same families
of multiple windows that are used in the Thomson method,
and that we first extended to the true rectangular tiling of
the TF plane, but instead they will now be used within the
context of the operators of Table 1. In the same way that
the Thomson method consists of computing power spectra
with a plurality of windows, and averaging the power spec-
tra together, we compute the power CCTs with a plurality
of windows, and average the results together. To compute
an appropriately-smoothed version the chirplet transform,
we compute a CCT (11) using each one of the multiple win-
dows as the mother chirplet. We then average the squared-
magnitudes of the resulting CCTs together, weighting by
the eigenvalues, just as with the Thomson method. This
gives us the CCT at a particular value of NW.

Alternatively, we may consider a given point
in the five-dimensional CCT parameter space, say,

(te, fe,log(Ar),c,d), is given by applying the operator
Cio, folog(Ar),c,a to the set of multiple windows and then
computing the sum of absolute squared energy:

S(te, felog(Ae),¢,d) = Y 1(C seton(an,e a9 (1) [s(1)
(14)
We now refer to the multiple windows as “multiple
mother chirplets” as they have collectively taken the role
of the single mother chirplet. They act collectively to pro-
duce an idealized parallelogram-shaped smoothing of the
TF (Wigner) distribution (Fig. 5), where the area of the
parallelogram is NW.

For example, if we apply a frequency shear, with pa-
rameter ¢ = 0.85, to each of the mother chirplets, the new
set of functions will collectively occupy the parallelogram-
shaped region of the TF plane indicated in the Fig 5,
lower right. This energy concentration represents a single
point located at coordinates (0,0, 0,0.85,0) in the averaged
squared-magnitude CCT.

2.6.5 The pyramidal (multi-resolution) CCT

Suppose we compute the above CCT (Section 2.6.4) at
a few different tile-sizes, and combine these CCTs into a
single six-parameter representation. The value of tile-size,
NW, may be thought of as a sixth coordinate axis in the
chirplet transform parameter space — TF-area. Including
this sixth coordinate axis provides us with a hierarchical
(multi-resolution) CCT.

To compute the proposed hierarchical CCT, we repeat
the computation of the CCT (14) for each of the desired
tile sizes and place them in a six-dimensional space, equally
spaced along the sixth coordinate axis. Part of the compu-
tation involves re-synthesizing a new set of multiple mother
chirplets for each value of NW.

Various 2-D slices through the multiresolution CCT
may correspond to useful tilings of the TF plane with true
parallelograms (true to the extent that the DPSS define
a truly rectangular region in the TF plane). For exam-
ple, the time-scale slice of the multiresolution CCT, taken
at a particular resolution, is a wavelet transform based on
multiple mother wavelets.

Again, we may use the result of Shenoy and Parks [48]
to generalize the multiresolution CCT by smoothing the
TF distribution with a continuously variable parallelogram
size. When uncountably many of these parallelogram-
smoothed TF planes are “stacked”, a continuous six-
dimensional parameter space results, having parameters
time, frequency, scale, chirp, dispersion, and resolution.

Others have done work to further generalize energy
concentration to arbitrarily-shaped regions of the TF
plane [55], rather than just parallelograms. It would there-
fore be possible to use these results to define more general
parameterizable transforms, based on families of multiple
analysis primitives acting collectively in the TF plane.
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Figure 5: Illustrating the six affine transformations of the TF plane,
using multiple “mother chirplets”. In this example, the mother
chirplets consist of a a set of 24 Discrete Prolate Spheroidal Se-
quences (DPSS) that collectivey define a rectangular energy con-
centration in the TF plane with an area NW = 12. Members of
this chirplet family each comprise 2NW functions that collectively
define some parallelogram-shaped region of the TF plane. When
considering the tile-size as an additional parameter, there are six
dimensions in the chirplet transform parameter space. Figure re-
produced from [39]; used with permission.
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2.7 Autochirplet and Cross Chirplet
Transforms

If, in (11) we choose the mother chirplet to be the signal
itself:

Ste tetog(a),cd = (Crc folog(ar),c,a $()]5(2)) (15)
then we have a generalization of the autocorrelation func-
tion, where, instead of only analyzing time-lags we ana-
lyze self-correlation with time-shift, frequency-shift, and
chirprate. We call this generalization of autocorrelation
the ‘autochirplet ambiguity function’. If, for example, the
signal contains time-shifted versions of itself, modulated
versions of itself, dilated versions of itself, time-dependent
frequency-shifted versions of itself, or frequency-dependent
time-shifted versions of itself, then this structure will be-
come evident when examining the ‘autochirplet ambigu-
ity function’. The ‘autochirplet ambiguity function’ is not
new, but, rather, was proposed by Berthon [18] as a gen-
eralization of the radar ambiguity function. Note that the
radar ambiguity function [56], [11] is a special case of (15).

It is well known that the power spectrum is the
Fourier transform of the autocorrelation function, and that
the Wigner distribution is the two-dimensional (rotated)
Fourier transform of the radar ambiguity function. Re-
cent work has also shown that there is a connection be-
tween the wideband ambiguity function and an appropri-
ately coordinate-transformed (to a logarithmic frequency
axis) version of the Wigner distribution [57], where the
connection is based on the Mellin transform. This connec-
tion gives us a link between the three-parameter “time-
shift—frequency-shift—scale-shift” subspace of (15) and
the time-frequency-scale subspace of the chirplet trans-
form. Extending this relation to the entire five-parameter
CCT would give us the autochirplet transform. This ex-
tension is one of our current research areas in the continued
development of the chirplet theory.

3 CHIRPLET TRANSFORM
SUBSPACES

In practice, from a computational, data storage, and dis-
play point of view, the chirplet transform is unwieldy.
Therefore, we consider subspaces of the entire parame-
ter space. Planes are particularly attractive choices in
this regard both because of the ease with which they may
be printed or displayed on a computer screen, and the
fact that they lend themselves to finite-energy parameter
spaces.

Well-known examples are the TF and TS planes dis-
cussed previously. Other subspaces, however, correspond
to entirely new transforms. For example, consider the
chirprate-frequency (CF) plane, computed with a Gaussian
window (Gaussian so that chirprate and dispersionrate do
not need to be dealt with separately). It turns out to be
useful in two cases: (1) when we have only a short segment
of data we wish to analyze (and therefore do not wish to
partition it into even smaller time segments by the STFT),
or (2) when we have a longer time-series, but are not inter-
ested in the time axis. In the latter case, the CF plane lets
us average out time, and observe long-term slowly-varying
frequency trends.
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which is itself a chirp. The bowtie-shaped spread around the peak
is due to the finite length of the analysis interval. Figure reproduced
from [26]; used with permission.

3.1 The Frequency-Frequency (FF)

Plane

We begin by discussing the CF plane, and then present
an argument for re-parameterizing this plane in terms of
two frequency indices, leading to what we will be calling
“frequency-frequency” (FF) analysis.

Consider a two-dimensional slice through the five-
dimensional CCT parameter space that we defined in (11):

(Co,g0,0,00 9(1) [ 5(1)) (16)
where s(t) is an arbitrary time series, and the two dimen-
sions of the transform space are the slope of the frequency
rise, ¢, and the center frequency f.. This transform is
known [26] as the “bowtie (<) subspace” since the CF
plane of a chirp is a sharp peak surrouned by faint bowtie-
shaped contours (Fig. 6). Computing the CF plane of a
signal, s(t), is equivalent to correlating the signal with
a family of chirps that are parameterized by chirprate, ¢
and center frequency, f.. Calculating the CF plane from
a signal that contains pure tones results in peaks on the
slope = 0 axis. Downchirps in the signal result in peaks
to the left of this line, and upchirps result in peaks to the
right.

For a discrete function®, we would have periodicity in
the CF plane, and the Nyquist boundary is diamond (<)
shaped. The Nyquist limit dictates that the chirps with the
highest (lowest) ¢ values begin with a fractional frequency
of —1/2 (+1/2) and end with a frequency of +1/2 (—1/2).
These chirps will both lie on the f. = 0 axis of the CF
plane. Consider a chirp that begins with a frequency 1/4
and ends with a frequency of 3/4. Tt has the same chirprate:
c=3/4—1/4 =1/2, but it will violate the Nyquist limit
because part of the chirp exceeds the fractional frequency
of 1/2, and will therefore give rise to aliasing.

Sc s

Ideally we would like this transform to have nice rectan-
gular boundaries for convenient viewing on a video display,
so we overcome the Nyquist problem by tilting the param-
eter space 45°. The new chirplets are then given by:

Co,(funatfoeg) /20 fend —Treg)/2,0 (1)

£
— g(t) 6]277(

end ~Fbeg fendtiveg
5 t+ 5 )t

(17)

We do not attempt to address issues of discretization
in this paper, except to the extent to which they have in-
fluenced the development of the continuous chirplet trans-
form.
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Figure 7: Frequency-Frequency (FF) plane of chirplet transform
computed from a pure tone. Here we parameterize the chirplets by
a change of coordinates (rotation of the plane by 45 degrees), using
fveg and fenq rather than ¢ and f.. Figure reproduced from [26];
used with permission.

where g denotes the mother chirplet. The change of co-
ordinates from the CF plane to the FF plane is given by
foeg = fo — c and fena = fc + ¢. When the analysis in-
terval (window) is of finite duration, fy., may be taken to
be the instantaneous frequency of the chirp at the begin-
ning of the analysis interval (time window) and fenaq the
instantaneous frequency at the end of this interval. Since
the new parameterization involves two frequency coordi-
nates, we will refer to the resulting parameter space as the
“frequency-frequency” (FF) plane. Figure 7 shows the FF
plane computed from a harmonic oscillation.

The value of the function defined on the FF plane, eval-
uated at the origin gives a measure of how strong the chirp
component from 0 to 0 (the DC component) is. The value
at coordinates (0,1/2), for example, gives the strength of
the component of a chirp going from a frequency of 0 to 1/2.
Values of the FF plane in the upper left half (above and to
the left of the diagonal fyeq = fend) correspond to upchirps;
those to the lower right correspond to downchirps. The val-
ues of the FF plane along the diagonal line, fyeg = fena, de-
fine the Fourier transform of the original time-domain sig-
nal; the windowed version of the signal may be entirely re-
constructed from only the diagonal of the complex-valued

FF plane.

3.2 A Simple Example With a Single
Chirp Component

In this first example, we allow an object to fall onto a small
radar unit'®. The resulting Time-Frequency distribution is
shown as a contour plot in Fig. 8(a). We extract the por-
tion of the recorded data which contains the object when
it is in free fall (from the time after it was released, to
just before the time it hit the radar horn). From this por-
tion of the time series (the corresponding TF distribution
appears in Fig. 8(b)), we compute the FF-plane through
the CCT, which is simply a correlation between the signal
and a family of chirplets parameterized in terms of begin-
ning and ending frequencies. Its density plot appears as
an image in Fig. 9. The response has a very high peak, as
evidenced from Fig. 10.

19For this experiment, we positioned the radar horn fac-
ing upward and held a volleyball two meters above the
horn, and released the ball after the recording began. We
recorded only the in-phase component, and ignored the
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Figure 8: Illustrative TF example: actual data from a uniformly acclerating object (falling ball). Third harmonics are visible, due to
non-linearities and slight clipping in radar. (a) Note the spurious effects as the ball bounces around after it has fallen. (b) Detail of portion

of data for which object is in free fall.

+1/2

Ending Frequency

-1/2

-2 Beginning Frequency +112

Figure 9: Frequency-Frequency (FF) plane of the chirplet transform
taken for radar data from uniformly accelerating object. Note the
location of the peak, indicating a near-zero initial velocity, and a
much higher final velocity.
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Figure 10: Shaded surface of Frequency-Frequency (FF) chirplet
plane for radar return of falling object. The localization in the FF
chirplet plane, for uniformly accelerating objects is even more visi-
ble here. Also, note the absense of negative frequency components
(lower quadrant).
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Figure 11: (a) Radon transform of the TF (Wigner) distribution
of the radar return from a uniformly accelerating (falling) object.
Since the Doppler return of the continuous wave radar is a linear
FM chirp, the TF distribution had a single linear component. A
sharp localization in Radon space resulted (except for the smaller
peak which is due to radar non-linearities, mainly third harmonic
distortion). (b) FF plane of autochirplet transform: a new parame-
terization of the Radon transform allows its parameters to take on
a new physical significance when the input “image” is the TF plane.
The abscissa has the meaning of beginning frequency and the ordi-
nate represents the ending frequency. Notice the diagonal slanted
bowtie shape, and the similarity to the bowtie shape in the FF plane
of Fig. 10.

3.3 Relationship Between Auto Chirplet
FF Plane and Radon Transform

Conceptually, each point in the FF plane corresponds to
a chirp component in the original signal, which also cor-
responds to a linear portion of the time-frequency (TF)
plane. The Radon transform (also known as the Hough
transform) is formulated as a family of line integrals
through a two-dimensional function. It is known for its
ability to extract straight lines from images. For a good
survey paper on the Radon transform, see Illingworth and
Kittler [58]. This property allows us to use it as an al-
ternate means of computing the FF plane of the chirplet
transform, by using the TF plane as our input image.

The Radon transform provides us with a simple means
of computing the FF plane of the autochirplet transform,
by using the Wigner distribution, and arriving at a trans-
form space that tells us basically the same information
as the chirplet FF-plane, except that we benefit from the
greater resolution of the Wigner distribution. It is well
known that the cross components of the Wigner distri-
bution are of an oscillatory nature, while the autocom-
ponents give a net positive contribution. Therefore, since
the Radon transform is integrating along lines, the cross
terms of the Wigner distribution are cancelled out along
each line, so that the points in the Radon transform of the
Wigner distribution only “see” the autocomponents of the
Wigner distribution (Fig. 11(a)).

The Radon transform is usually computed from the
normal equation of a line:

z cos(f) + ysin(f) = p (18)
as an integral along each of these lines in the original
space. The parameter space is sampled uniformly, in the

quadrature component of the radar. The sampling rate

was 8kHz.
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Figure 12: The “Nyquist problem” revisited: Radon transfom com-
puted from an identically non-zero image. The commonly used
slope-intercept parameterization of the Radon transform results in
the ¢-shaped region similar to our “Nyquist boundary” in the CF
plane.

(8, p) coordinates. It is easier to compare the Radon trans-
form of the Wigner distribution with the chirplet CF plane
(Fig. 10) if, by first, without loss of generality, we normal-
ize foeg and fena to be on the interval from —1/2 to 1/2
and the TF distribution to have time and frequency coor-
dinates on the same interval from —1/2 to 1/2. Then we
make the substitution:

sin(6) = p/ favg (19)

and
tan(f) =1/ faiss

where fdg‘ff = fend — fbeg and fcwg = (fend + fbeg)/2~

A simpler (perhaps equally well known) form of the
Radon transform parameterizes the lines in terms of their
slopes and intercepts. This parameterization has the ad-
vantage that it maps lines to points, and points to lines,
while it has the disadvantage that there is a singularity
when lines of infinite slope (vertical lines) are encountered.
Because of the Nyquist limit, however, we do not have this
problem when the input to the Radon transform is a time-
frequency distribution. Thus we may be tempted to use the
slope-intercept form of the Radon transform, except that
we would prefer to have a parameterization in that matches
the FF plane rather than the CF plane, for reasons previ-
ously discussed. The “Nyquist boundaries” we referred to
earlier are most evident if we simply consider the discrete
Radon transform of a matrix of identically non-zero values
(Fig. 12), where we can observe the same diamond shape
which initially prompted us to use frey and fenq rather
than faisr and faug.

We may overcome the problems associated with bound-
aries by defining a new version of the Radon transform,
where we use the following pair of parameters:

(20)

e Beginning intercept, fpey: the leftmost ordinate on
the line (the ordinate for an abscissa of —1/2).



e FEnding intercept, fena: the rightmost ordinate on the
line (the ordinate for an abscissa of +1/2).

In Fig. 11(b) we show the autochirplet FF plane calculated
from the falling-object data, using the new parameteriza-
tion of the Radon transform.

3.4 Nondilational Chirplet Transform

We do not address discretization issues in this paper. How-
ever, it is worth noting, that in practice, we generally wish
to compute the chirplet transform of a discrete-time sig-
nal, and it is sometimes the case that the mother chirplet
is also discrete-time and has no closed-form mathematical
description. Thus, dilation would require resampling, and
contraction would require antialiasing. In this case, the
largest subspace we might obtain would be the subspace
that omits both dilation and tiling-size, leaving us with
the four-dimensional parameter space:
)

3.5 Warbling Chirplet: Analysis of
Signals of Oscillating Frequency

(21)

Ste,fo0,cd= <th,fc,o,c,d g

Suppose we choose a windowed sinusoidal FM signal for
our mother chirplet. Such a signal has a frequency that
periodically rises and falls (much like the vibrato of musical
instruments or the wail of a police siren).

Within time-frequency space, conventional Doppler
radar spectrograms treat the motion of objects as though
their velocities (Doppler frequencies) were piecewise con-
stant (constant over each of the short time intervals),
whereas the chirplet transform attained a certain advan-
tage by generalizing to a piecewise constant acceleration
model.

Originally, we had further extended the linear FM
chirplet bases to piecewise quadratic, and piecewise cubic
FM — piecewise polynomial approximations to the time-
frequency evolution of Doppler returns. However, looking
more closely at the underlying physics of floating objects,
which was our main motivation that led to our discovery
of the CCT, we observed a somewhat sinusoidal evolution
of the Doppler signals.

If you have ever watched a cork bobbing up and down
at the seaside, you would notice that it moves around in a
circle with a distinct periodicity. It moves up and down,
but it also moves horizontally. Looking out at a target with
a radar, for example, we see the horizontal component of
motion (which is essentially a scaled version of the Hilbert
transform of the vertical movement). This sinusoidal'!
horizontal movement results in a sinusoidally varying fre-
quency in the Doppler return.

We wish to end up with the instantaneous frequency of
the basis function being given by:

f=PBcos(2nfmt+p)+ fe (22)

where f. is the center (carrier) frequency, p (which varies
on the interval from 0 to 27) is the relative position of one

" Here we are simplifying the description. The dynamics
of the sea are more fully described in [59].
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Figure 13: Four examples of warbling chirp functions. Windows

have been eliminated for clarity.

of the peak epochs in frequency, with respect to the origin,
and fr, is the modulation frequency. If we are analyzing a
discrete signal, s[rT], we also note that |8 + f.| must be
less than 1/2, otherwise the frequency modulation is not
bounded by the Nyquist limit.

Integrating to get the phase, we get:
_ Bsin(27fmi 4 p)

¢ + 27 fet (23)
Jm '
which gives us the family of chirplets defined by:
Bsin(2nfm t+p)
G550 = A€’ TSt (24)

which may be appropriately windowed, such as with a
Gaussian, as was done in (3).

In Fig. 13, we show four examples taken from a fam-
ily of chirplets that were derived from a warbling mother
chirplet. We show them in both the time-domain, and the
TF domain, annotated in terms of the pendulum model
described now.



PENDULUM MODEL OF WARBLING CHIRPLET
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Figure 14: Four pendulums depicted at locations in the dilation-
dilation chirplet plane corresponding to where each would produce
maximal energy in this distribution.

Pendulums swinging to and fro in front of a radar (as-
sume the amplitude of the swing is small compared to the
length of the string) produce a signal which is very similar
to that produced by radar returns from floating objects.
Suppose the velocity of a pendulum, as a function of time,
is given by:

v = fcos(27 fmt) (25)

(the position is given by Ssin(27 fmt +p)/ fm)

The demodulated radar Doppler signal would then be
given by
Bsin(2mfm t+p)
e’ m

(26)
which may be analyzed using the family of chirplets given
by (24).

A pendulum with a long string, swinging with large
amplitude in front of the radar will produce a time series
which, will have most of its energy in the upper left hand
portion of the space (low f,, and high §). A density plot
of the transform, computed from the time series will show
a strong peak in the upper left region, with the peak lo-
cated at the coordinates corresponding to the particular
frequency of swinging (fm) and amplitude 3. A pendu-
lum with a small swing, and a short length, will appear
as an energy concentration in the lower right corner of the
pendulum parameter space.

Figure 14 shows where four pendulums would appear
as peaks in this pendulum parameter space. Each of these
four points in the space corresponds to the four examples
of Fig. 13.

In Fig. 15 we show the STFT computed from an actual
radar return from a pendulum.

Using the warbling mother chirplet, we also computed
the “dilation-dilation” (ff@) plane of the chirplet trans-
form (Fig. 16) for the pendulum data.

The members of the chirplet family given by (24) may
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Figure 15: Time-frequency distribution of radar return from a pen-
dulum (computed using proposed rectangular-tiling method). Note
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be regarded as being related to each other by affine coor-
dinate transformations in the time-frequency plane if we
use the rather abstract notion of instantaneous frequency.
Consider four functions from (24), denoted A, B, C, and
D, corresponding to the four signals depicted in Fig. 13
within the plane formed by time and instantaneous fre-
quency. While there is no way to actually calculate this
plane, we can consider these functions as being defined by
sinusoids in this plane. Then A is a freqeuncy-dilated ver-
sion of C, and B is a frequency-dilated version of D. While
there is no practical means of dilating frequency without
contracting time'?, or vice-versa, we may denote the ab-
stract operator:

C0,0,0,00,8,5; 9(1) (27)
as an operator that would magnify the time-frequency dis-
tribution of g(¢).

When we write, for example,

C0,0,00,0,2 9(1), (28)
we mean to replace g(t) with another function that occu-
pies twice the area in the TF plane. In general, such a
function probably does not exist. We noted, in the case of
the prolate chirplet family, that we could, however, vary
the time-bandwidth product of the tiling by replacing the
family of mother chirplets with a new family that had a
different value of NW. By similar reasoning, within the
context of the warbling chirplet we interpret (28) to mean
“replace g(t) with a new sinusoidal-FM function that has
v/2 times the modulation index and l/ﬂ times the mod-
ulation frequency”, so that, we obtain an equal dilation
by v/2 along each of the time and instantaneous frequency
axes. The result is a dilation of both the time and instan-
taneous frequency axes by a factor of v/2. The law of com-
position, identity, and inverse, within this six-parameter
“group” is given by the usual two-dimensional affine group
law [46].

Therefore, we may write the warbling chirplet trans-
form in terms of the six affine coordinate transformations
in the TF plane:

Sfm.b.fe = (C 5 g(t)]s(t))

0,fc, 725,0,0, 7— (29)

and refer to the subspace (Fig. 16) defined along the f,
and f# axes as the “dilation-dilation” plane, or the A;Af
plane.

4 CONCLUSION

We have presented the chirplet transform, which may be
viewed as a generalization of both the short-time Fourier
transform (STFT) and the wavelet transform (WT). These
generalizations are based on the fact that both the STFT
and W'T can be written as inner products of the signal
under analysis with versions of a single analysis primitive
(window /wavelet) acted on by various operators. In the
case of the wavelet, these operators result in 1-1) affine
coordinate tranformations of the time-axis. In the case of

2 Although there are devices, known as pitch trans-
posers, that attempt to perform such an operation in a
highly nonlinear way.
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the chirplet, these operators result in 2- D affine coordinate
transformations of the TF plane (of the time-domain func-
tion that they operate on, if one prefers to regard the oper-
ators as acting in the time-domain). The family of chirplets
is the result of a family of TF-affine coordinate transfor-
mation operators acting on a single window/wavelet (the
“mother chirplet”). The chirplet transform is the resulting
signal representation on this family of chirplets.

1. As is well-known, taking the Fourier transform of a
one dimensional function results in a complex-valued
function of a single variable.

2. As is also well-known, the STFT results in a func-
tion of two variables: time and freqency. The wavelet
transform results in a complex function of two vari-
ables: time and scale.

3. The combined TFS transform results in a complex
function of three variables: time, frequency and scale.

4. The Gaussian chirplet transform (GCT) results in a
complex function of four variables: time, frequency,
scale, and “chirprate”.

5. Another complex-valued four-dimensional parameter
space is given by: time, frequency, “chirprate” and
“dispersionrate”. This space has the interesting prop-
erty that it does not require dilation of the mother
chirplet, and may therefore be applied to discrete
mother chirplets that do not have a mathematical de-
scription (e.g. no need for interpolation or antialias-
ing).

6. The full continuous chirplet transform (CCT) that
can be obtained using only a single mother chirplet
results in a complex function of five variables: time,
frequency, scale, chirprate, and dispersionrate.

7. The multiple-mother-chirplet transform (e.g. using
the prolate family) results in a real function of six
variables: time, frequency, scale, chirprate, disper-
sionrate, and TF tile size. The coordinate axes of
this six-dimensional parameter space correspond to
the six affine coordinate transformations in the TF
plane: translation along each of the time and fre-
quency axes, change in aspect ratio, shear along each
of the time and frequency axes, and change in area
occupied in the TF plane. The last of these six di-
mensions is discretized, while the other five are con-
tinuous.

The chirplet transform allows for a unified framework
for comparison of various time-frequency methods, because
it embodies many other such methods as lower-dimensional
subspaces in the chirplet analysis space. For example,
the wavelet transform, the short-time Fourier transform
(STFT), the “frequency-frequency” transform, and the
scale-frequency transform are planar slices through the pro-
posed multi-dimensional chirplet parameter space, while
many adaptive methods [60], [61], [62] are either collec-
tions of arbitrary points or two-parameter curved surfaces
(manifolds) taken from the multi-dimensional chirplet pa-
rameter space. In addition to unifying some of the existing
methods, the chirplet transform provides us with a frame-
work for both formulating and evaluating entirely new sub-
space transforms.



As pointed out in 1.1, many others have contributed

directly or indirectly to the development of the chirplet
transform. In many ways, however, we have taken its de-
velopment further toward becoming a useful signal process-
ing tool for practical engineering problems, as evidenced by
the material presented in this paper.

ACKNOWLEDGMENT

The authors wish to express their gratitude to the fol-

lowing individuals for their valuable assistance: Rosalind
Picard, Irving Segal, Shawn Becker, and Kris Popat of the
Massachusetts Institute of Technology; Douglas Jones of
the University of Illinois at Urbana-Champaign; Richard
Baraniuk of Rice University; and the anonymous reviewers,
whose careful efforts resulted in a substantially improved
presentation.

References

(1]

(2]

I. Daubechies. Ten Lectures on Wavelets. Number 61
in CBMS-NSF Series in Applied Mathematics. STAM
Publications, Philadelphia, 1992.

C. E. Heil and D. F. Walnut. Continuous and dis-
crete wavelet transforms. SIAM Review, 31(4):628-
666, 1989.

S. G. Mallat. A theory for multiresolution signal
decomposition: The wavelet representation. [EFE
Trans. on Patt. Anal. and Mach. Intell., 11(7):674—
693, 1989.

I. Daubechies. The wavelet transform, time-frequency
localization and signal analysis. TEFE Trans. on Inf.
Theory, 36(5):961-1005, 1990.

G. Strang. Wavelets and dilation equations: A brief
introduction. SIAM Review, 31(4):614-627, 1989.

Olivier Rioul and Patrick Flandrin. Time-scale energy
distributions: A general class extending wavelet trans-
forms. IEEE Trans. on Signal Processing, 40(7):1746—-
1757, July 1992.

D. Gabor. Theory of communication.
Eng., Vol.93(Part I11):429-457, 1946.

William Siebert. A radar detection philosophy. IT-
2(3), September 1956.

William Siebert. Statistical theories of radar synthe-
sis. October 1956.

William Siebert.
April 15, 1958.

Merrill I. Skolnik. Introduction to Radar Systems, Sec-
ond Fdition. McGraw-Hill, second edition, 1980.

G.B. Folland. Harmonic Analysis in Phase Space.
Princeton University Press, Princeton, NJ, 1989.

J. Inst. FElec.

Woodward’s uncertainty function.

A. Grossmann and T. Paul. Wave functions on sub-
groups of the group of affine cannonical tranforma-
tions. Lecture notes in physics, No. 211: Resonances
— Models and Phenomena, pages 128-138. Springer-
Verlag, 1984.

17

[14]
[15]

[16]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

A. Papoulis. Signal Analysis. McGraw-Hill, 1977.

D.L. Jones and T.W. Parks. Time-frequency window
leakage in the short-time fourier transform. Circuits,
Systems, and Signal Processing, 6(3), 1987.

H.H. Szu and J.A. Blodgett. On the Locus and Spread
of Pseudo-Density Functions in the Time-Frequency
Plane. Philips J. Res., 37:79-110, 1982.

A. Janssen. On the Locus and Spread of Pseudo-
Density Functions in the Time-Frequency Plane.
Philips J. Res., 37:79-110, 1982.

A. Berthon. Operator Groups and Ambiguity Func-
tions in Signal Processing. In J.M. Combes, editor,
Wavelets: Time-Frequency Methods and Phase Space.
Springer Verlag, 1989.

S. Haykin, B. W. Currie, and V. Kezys. Surface-based
radar: coherent. In S. Haykin, E. O. Lewis, R. K.
Raney, and J. R. Rossiter, editors, Remote Sensing of
Sea Ice and Icebergs, pages 443-504. John Wiley and
Sons, 1994.

D. Slepian and H.O. Pollak. Prolate spheroidal wave
functions,Fourier analysis and uncertainty, 1. Bell Sys-
tem Technical Journal 40:43-64, January 1961.

H.J. Landau and H.O. Pollak. Prolate spheroidal wave
functions,Fourier analysis and uncertainty, II. Bell
System Technical Journal, 40:65-84, January 1961.

D. Slepian and H.O. Pollak. Prolate spheroidal wave
functions,Fourier analysis and uncertainty, III: The
dimension of essentially time-and band-limited sig-

nals. Bell System Technical Journal, 41:1295-1336,
July 1962.
D. Slepian. Prolate spheroidal wave functions,Fourier

analysis and uncertainty, IV:Extensions to many
dimensions;generalized prolate spheroidal functions.
Bell System Technical Journal, 43:3009-3058, Novem-
ber 1964.

D. Slepian. Prolate spheroidal wave functions,Fourier
analysis and uncertainty, V:The discrete case. Bell
System Technical Journal, 57:1371-1430, may-jun
1978.

D. Slepian. On bandwidth. Proc. IFEF, 64:292-300,
March 1976.

Steve Mann and Simon Haykin. The chirplet trans-
form — a generalization of Gabor’s logon transform.
Vision Interface 91, June 3-7 1991.

D Mihovilovic and R.N. Bracewell. Adaptive chirplet
representation of signals on time—frequency plane.
FElectronics Letters, 27(13):1159-1161, June 20, 1991.

D Mihovilovic and R.N. Bracewell. Whistler analysis
in the time-frequency plane using chirplets. Journal of
Geophysical Research, 97(A11):17199-17204, Novem-
ber, 1992.

B. Torresani. Wavelets associated with representa-
tions on the affine Weyl-Heisenberg group. J. Math.
Phys., 32(5):1273-1279, May 1991.

J. Segman and W. Schempp. Two methods of incor-
porating scale in the Heisenberg group. 1993. JMIV
special issue on wavelets.



[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

R Wilson, A D Calway, and E R S Pearson. A gen-
eralised wavelet transform for Fourier analysis: the
multiresolution Fourier transform and its application
to image and audio signal analysis. [EFE Trans.
on Information Theory, 38(2):674—690, March 1992.
ftp://ftp.dcs.warwick.ac.uk/reports/isp-1T38.

R Wilson, A D Calway, E R S Pearson,
A R Davies. An introduction to the mul-
tiresolution Fourier transform. Technical re-
port, Department of Computer Science, Univer-
sity of Warwick, Coventry CV4 TAL UK., 1992.
ftp://ftp.dcs.warwick.ac.uk/reports/rr-204/.

R. G. Baraniuk. Shear madness: Signal-dependent
and metaplectic time-frequency representations. PhD
dissertation, University of Illinois at Urbana-
Champaign, Department of Electrical and Computer
Engineering, August 1992.

and

Richard Baraniuk and Doug Jones. Shear madness:
New orthonormal bases and frames using chirp func-
tions. Trans. Signal Processing, vol. 41, December
1993. Special Issue on Wavelets in Signal Processing.

D. Mendlovic H. Ozaktas, B. Barshan and L. Onural.
Convolution, filtering, and multiplexing in fractional
fourier domains and their relation to chirp and wavelet
transforms. JOSA A. to appear.

Steve Mann and Simon Haykin. Time-frequency per-
spectives: The chirplet transform. In Proceedings of
the International Conference on Acoustics, Speech and
Signal Processing, San Francisco, CA, March 23-26,
1992. TEEE.

Steve Mann and Shawn Becker. Computation of some
projective chirplet transform (PCT) and metaplec-
tic chirplet transform (MCT) subspaces, with appli-
cations in signal processing. DSP World, November
1992.

Steve Mann and Simon Haykin. The Adaptive
Chirplet: An Adaptive Wavelet Like Transform.
SPIFE, 36th Annual International Symposium on Opli-
cal and Optoelectronic Applied Science and Engineer-
ing, 21-26 July 1991.

Steve Mann and Simon Haykin. Chirplets and War-
blets: Novel Time—Frequency Representations. FElec-
tronics Letters, 28(2), January 1992.

S. Mann. Wavelets and chirplets: Time—frequency
perspectives, with applications. In Petriu Archibald,
editor, Advances in Machine Vision, Strategies and
Applications. World Scientific, 1992.

R.G. Baraniuk and D.L. Jones. New dimensions in
wavelet analysis. In Proceedings of the International
Conference on Acoustics, Speech and Signal Process-
ing, San Francisco, CA, March 23-26, 1992. IEEE.

J. Cunningham and S. Haykin. Neural network de-
tection of small moving radar targets in an ocean en-
vironment. Workshop on Neural Networks for Signal
Processing, September 1992.

Foley vanDam Feiner Hughes. Computer Graphics,
PRINCIPLES AND PRACTICE. THE SYSTEMS
PROGRAMMING SERIES. Addison-Wesley, second
edition, 1990.

18

[44]

[49]

[50]

[51]

[52]

(53]
[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

I.E. Segal. Foundations of the theory of dynami-
cal systems of infinitely many degrees of freedom.
Matematisk-fysiske Meddelelser, 31(12):1-39, 1959.

Victor Guillemin and Shlomo Sternberg. Symplectic
techniques in physics. Cambridge University Press,
1984. MIT course text book.

M. Artin. Algebra. Prentice Hall, 1991.

I. E. Segal. Foundations of the theory of dynam-
ical systems of infinitely many degrees of freedom.
Matematisk-fysiske Meddelelser, 31(12):1-39, 1959.

Ram G. Shenoy and Thomas W. Parks. The Weyl
correspondence and time—frequency analysis. [EFE
Trans. Sig. Proc., 42(2):318-331, February 1994.

D.J. Thomson. Spectrum estimation and harmonic
analysis. Proc. IEEE, 70(9):1055-1096, September
1982.

Alan V. Oppenheim and Ronald W. Schafer. Discrete—
Time Signal Processing. Prentice Hall, 1989.

Some comments on Fourier anal-

SIAM Review,

David Slepian.
ysis,uncertainty and modelling.
25(3):379-393, July 1983.

Peter J. Burt and Edward Adelson. The Laplacian

pyramid as a compact image code. IFEF Transactions
on Communications, 31:532-540, April 1983.

Leon Cohen. Time-frequency distributions — a re-
view. Proceedings of the IEEE, 77(7):941-981, 1989.

L. Cohen.
1995.

Jayakumar Ramanathan and Pankaj Topiwala. Time-
frequency localization via the Weyl correspondence.
Technical Report MTP-92B0000003, MITRE, Bed-
ford, Massachusetts, September 1992.

P. M. Woodward. Probability and Information Theory
with Applications to Radar. McGraw-Hill, 1953.

Time-Frequency Analysis. Prentice-Hall,

J. Bertrand and P. Bertrand. Affine time-frequency
distributions. To appear in Time-Frequency Analysis

- Methods and Applications, B. Boashash (ed.).

J Hllingworth and J Kittler. A survey or the Hough
Transform . Computer Vision, Graphics, and Image
Processing, August 10 1987.

W. J. Pierson and L. A. Moskowitz. A proposed spec-
tral form for fully developed wind seas based on the
similarity theory of S. A. Kitaigorodskii. Journal of
Geophysical Research, 69(24):5181-5203, 1964.

Steve Mann and Simon Haykin. Adaptive “Chirplet”
Transform: an adaptive generalization of the wavelet

transform.  Optical Engineering, 31(6):1243-1256,
June 1992.
R. G. Baraniuk and D. L. Jones. A signal dependent

time-frequency representation: Optimal kernel design.
IEEE transactions on signal processing, 41(4):1589—
1602, April 1993.

R. G. Baraniuk and D. L. Jones. Signal-dependent
time—frequency analysis using a radially gaussian ker-
nel. signal processing, 32(3):263-284, June 1993.



