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The Chirplet Transform:
A Generalization of Gabor’s L ogon Transform
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Abstract

We propose a novel transform, an expansion of
an arbitrary function onto a basis of multi-scale
chirps (swept frequency wave packets). We
apply this new transform to a practical problem
in marine radar: the detection of floating objects
by their "acceleration signature" (the
“"chirpyness" of their radar backscatter), and
obtain results far better than those previously
obtained by other current Doppler radar
methods. Each of the chirplets essentially models
the underlying physics of motion of a floating

object. Because it so closely captures the essence

of the physical phenomena, the transform is near
optimal for the problem of detecting floating
objects.

Besides applying it to our radar image
processing interests, we also found the transform
provided a very good analysis of actual sampled
sounds, such as bird chirps and police sirens,
which have a chirplike nonstationarity, as well as
Doppler sounds from people entering a room,
and from swimmers amiska clutter.

For the development, we first generalized
Gabor's notion of expansion onto a basis of
elementary "logons" (within the
Weyl-Hiesenberg group) to the extent that our
generalization included, as a special case, the
wavelet transform (expansion in the affine
group). We then extended that generalization
further to include what we call "chirplets". We
have coined the term "chirplet transform" to
denote this overall generalization. Thus the
Weyl-Hiesenberg and affine groups are both
special cases of oghirplet transform, with the
"chipyness" (Doppler acceleration) set to zero.

We lay the foundation for future work which
will bring together the theories of mixture
distributions (Expectation Maximization) and
our "Generalized Logon Transform".

Keywords. Time-Frequency, chirplet, chirp,
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Figure 1: Logon representation of a "complete”
set of Gabor bases of relatively long duration
and narrow bandwidth. We use the convention
of frequency across and time down (in
contradiction to musical notation) since our
programs that produce, for example, sliding
window FFTs, compute one short FFT at a time,
displaying each one as a raster line as soon as it
is computed.

envelope. This notion is known formally in the
physics literature as the Weyl-Hiesenberg group.
(The "sliding window Fourier transform"

belongs to the Weyl-Hiesenberg group since we
can think of the bases as being modulated
versions of ongarent window.) Gabor
emphasised the use of a Gaussian window, since
it minimises the uncertainty produMAf
(provided that these support measures are
quantified in terms of the root mean square
deviations from their mean epo¢2l. The
time-frequency logon diagrams, depicted in
figures 1 and 2 show how tiaabor function

bases cover the time-frequency space, and how
we can trade frequency resolution for improved
temporal resolution. Gabor originally used



logon, Gabor, wavelet, Doppler, rectangles to designate each of thetementary

Expectation-Maximization. signals. If each of these rectangles were a pixel,
and its brightness was set in accordance with the
Gabor’s" Logon" Paradigm appropriate coefficient in the signal expansion
Gabor proposed an expansion of a signal onto a (for example by replacing the rectangle with a
set of bases which he illustrated by way of dither pattern), the logon diagram would be a
"logons", which are portions of a density plot (image) of the TF distribution.

Time-Frequency (TF) spatele showed that an
arbitrary signal can be decomposed onto a set of
functions which are all just modulated versions
of a single Ganssian

1Although the logon representation is not a
"frame"[1], and is therefore not numerically
stable, we proceed in the development of this
line of thought, and will later address the issue
of numerical stability byverrepresenting the
expansion.
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Figure 3: Logon representation of the set of basis
functions corresponding to a wavelet transform.
Note the two-sided spectrum (zero in center),
since we generally use wavelets which lie in the
Hardy spacéanalytic wavelets). These complex
wavelets do not suffer from mirroring in the f =
Figure 2: Logon representation of a complete set 0 @xis. Daubechies has shown that we cannot

of Gabor bases of relatively short duration and ~ Nave a set of orthonormal wavelet bases which
broad bandwidth. We have traded off frequency i€ in the Hardy space, so we limit ourselves to
resolution in order to get better temporal non-orthogonal frames.

resolution. .

3 Chirps
1.1 The wavelet transform within the A pure tone is given byiv )
logon paradigm . $lt) = e (1)
The wavelet transform may be thought of as ~ Where j=v=T and { is a constant (the
breaking up the signal into a set of affine-shaped frequency of the tone in cycles per second).br>
bases, as illustrated in figure 3. In all our TF A chirp is a swept frequency where the
figures we show frequency on a linear scale.  instantaneous frequency varies with time. Chirps

Thus we can readily see that the aspect ratios of are most familiar as the sound made by a bird or
the bases are proportional to the distances from



the bases are proportional to the distances from
the f = 0 axis. The aspect ratios are still
constrained, but the constraint is different.
Instead of the constant size constraint of the
Weyl-Hiesenberg type expansion, we have a
constant "Q" (ratio of bandwidth to center
frequency) constraint.

2" Wavelets' and Wavelets
In our development of a Generalized Logon
Transform (GLT), we first removed the

a bat.
Initially, suppose we have a linear chirp given
by:

,‘g“] = Is;|“I=I:Ir||=+5']| EEJ
Comparing equations 1 and 2 we see that at time { = 0,
the “constant™ frequency is & and that it rises with a slope
a. More formally: the phase is ¢ = 27(a®™ + 5 4 4], so
the frequency, digfdt 35 @ = 2={2al + b), and the time rate
of change of frequency is a constant: § = 2=(2a),
Physically, the notion afhstantaneous

frequency is somewhat abstract [Carson,1922],

constraints of constant aspect ratio or constant Qas we know that the frequency can only be

we expanded arbitrarily onto a basis of
"wavelets" of varying shape, with the only
constraint being that each "wavelet" be a Gabor
function.br> In the past, the term "wavelet"
often denoted any arbitrary basis function which
acted as a bandpass filter (when used as a
convolutional kernel). More recently, however,
the termwavelet has been used to denote a basis
function of constant shape (from an affine group
of translates and dilates of omether wavelet).
Indeed, in the earlier papers, the term "wavelets
of constant shape" was often used to denote the
affine basis explicitly. Whenever the word
"wavelet" appears in quotes, we mean "wavelet"
in the wide sense: any ephemeral burst of
energy, finite in physical support (which
includes bases in both the Weyl-Hiesenberg and
the affine spaces).

measured to within a certain precision, so if the
time evolution of the chirp frequency were
measuregit would be found to lie along some
fuzzy line made oéstimatedooints in TF space,
where a regression could be applied to estimate
the slope.

4 The Chirplet at a Single Scale
Generally we window the chirp so that it will be
finite in extent. We may use the Ganssian
window?

eny = e HEP

(2

i

2We have greatly simplified our analysis
here: what we really want is approximation to
an ellipse in TF space; the bases are actually
found by optimization techniques, based on
certain constraints.
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Figure 4: Relationship between wave, "wavelet",
chirp and "chirplet", in terms of time series and
magnitude Time-Frequency (TF) distributions.

but with one small modification. Since we desire
unit L2 norm, we instead let

eny = 1!;%;;.;-&[%!’

— 1y
where e = I

Now we use the bases

(4}

(5)

Yrghe = e"vlcjhﬂulﬂ]:

(8)

ar

ke = enu,gf2miolticl il (7)

For now, we leave the dilation parameter ¢
constant.

We then have a chirp "wavelet" for
which we have coined the term
“chirplet". Figure 4 shows that the
relationship of a chirplet to a chirp is
analogous to that of a wavelet to a wave.
Asymmetric wavelets axe nothing new;
Daubechies has shown that eliminating
the constraint of symmetry makes

"t = INTERCEFT (AYG. FREQ)

“u" = SLOFE CCHIRPYRESSE) MESH PLOT OF CONTOUR ATLEFT

Figure 5: Single scale chirplet transform of an
ideal chirplet. Expanding a chirp onto a basis of
chirps results in a spread which illustrates a
fundamental resolution limit i== space akin to
the Hiesenberg uncertainty relation in TF space.

it easier to form an orthonormal set, but here we
havedeliberately introduced a specific form of
asymmetry and will exploit this structure in what
follows.

We define an expansion onto chirps:

va (@, 6) =< v | 2(t) > (&)

Wherex(t) is an arbitrary time series, and the
two dimensions in the transform domain are the
slope of the frequency rise a and the center
frequency b. We call this space "bowis=2)(
space" since one of the chirp bases itself,
expanded onto a basis of chirps has
bowtie-shaped contours (see figure 5) in this a
and b space. Any signal can be expanded as a
weighted sum of these chirps. We can think of
this process as fitting the distribution to a
number ofe-shaped "centers" much as we had
fit the distributions by somewhat elliptical
(almost bivariate Gaussian) centers in TF space.
Pure tones are characterised by bowties on the y
axis (the middle line a = 0). Downchirps are to
the left of this line, while upchirps are bowties
situated in the right-hand half of this space. The
fact that the chirplet transform of a chirplet itself
is not a perfectly sharp spike is a consequence of
the overlap of the bases and the fundamental
resolution limit inherent in any transform.

Once we specify the scale (number of
samples) and the window function, we may
characterise the chirp in one of two ways:

® By specifying the chirpyness (rate of
change ofnstan\-taneous.frequency) a

and the center frequency (average
instantaneous frequency) b.

By specifying the beginning frequency
fbeg: b - a and the ending frequengy,
=b + a. (For simplicity we have assumed
the window essentially starts at time t =
-1 and ends at time t = +1.)

4.1The Nyquist boundary problem
Ideally we would like our transform to have nice



"Manhattan” rectangular boundaries for
convenient viewing on a video display. When we
parameterize the chirplet space in terms of slope
(rate of frequency change) and intercept (average
frequency), we have an inconvenient shape of
bound\-ary. The Nyquist limits dictate that the
“chirpiest” of chirps goes from a fractional
frequency of -1/2 to 1/2 (or +1/2
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Figure 6: Single scale chirplet transform of a
pure tone. Here we parameterize the chirplets by
starting frequency and ending frequency.

down to -1/2). This chirp will lie onthe b =0
axis, as far to the right as possible (or as far to
the left as possible). But then a chirp which has
the same value of a, but a non-zero intercept (for
example one going from fractional frequency
-1/4 to 3/4), will violate the Nyquist limit and
give rise to aliasing in frequency space.

It turns out that the Nyquist boundary in e
(a, b) space is diamond-shaped, and so we can
overcome the problem by just tilting the space
45°. Figure 6 shows the chirplet transform of a
signal which is itself a special case of a chirplet,
namely a pure tone (modulating a Ganssian
envelope). We define the starting frequency as
the frequency of the wave at the beginning of the
window, and the ending frequency as the
frequency at the end of the window. When we
use Gaussian windows, we generally define the

window boundaries in terms of th&@ 3points.

In this single-scale "chirplet snapshot" we fix
both the mean epoch location and the physical
support (resolution), and vary the center
frequency and chirpyness (where we have used
our new display format which provides explicitly
fbeg on the across (left.to right) axis ang fon
the up axis).

The center of thishirplet snapshot gives a
measure of how strong the chirp component
from 0 to O (the DC component) is. The value at

(zero acceleration) in terms of Doppler. Our
previously described "bowtie" space is also a
special case of this generalization, where the
scale is fixed constant.

There are 5 free parameters in each of our
basis functions:

® Temporal location: location of the mean
epoch within the time series being
analysed.

Physical suppor/\t, otherwise known as
the effective pulse width acale. At (the
parameter c in equations 6 and 7) is
usually measured in terms of the RMS
deviation from the mean epoch (the
"second-order moment").

Center frequency; the mean epoch in
Fourier space.

"Chirpyness"; the rate of change of the
instantaneous frequency. If the chirpyness
is zero, we have a pure Gabor function.
Relative phase: the phase between the
Ganssian envelope and the chirp it is
modulated by.

If we are only looking at the magnitude or
power distribution of the GLT, we can ignore the
last parameter because all the GLT bases are
complex and lie in the Hardy space (their
imaginary parts are equal to the Hilbert
transforms of their real parts). Because these
functions areanalytic, the contribution due to
one of the bases is very insensitive to the relative
phase.

Chirps correspond to slanted logons which can
fill the time-frequency space completely.

We can expand any arbitrary signal onto a
basis of up-chirps, downchirps, or a mixed basis
of upchirps, downchirps, and ordinary Gabor
functions which all show up as nearly elliptical
contours (having equal areas) in time-frequency



coordinates (0,1/2) gives the strength of the
component of a chirp going from a fractional
frequency of 0 to 1/2. Now, any points on the
line y = x correspond to pure tones. Points in the
upper left half (above this line) correspond to
coefficients of upchirps; those to the lower right
correspond to downchirps.

We allow considerable overlap in the bases,
and allow the slant of the individual logons to
vary in a somewhat continuous fashion. (We
have also trie@ddapting[3]the bases; an adaptive
"wavelet" or chirplet transform allows accurate
representation with a very small number of
coefficients.)

5 Multi-Scale Chirping " Wavelets®

(GLT basisfunctions)

We propose a basis of multi-scale chirps. Of
course the Ga-bor functions (of both the
Weyl-Hiesenberg and the affine groups) are just
special cases, where the chirp rate is zero (the
beginning instantaneous frequency equals the
ending instantaneous frequency), corresponding
to constant velocity

contours (having equal areas) In tme-frequency
spacé but with different slants (orientations) and
aspect ratios.

By tilting the logons, we can simultaneously
increase the support in both domainghout
losing optimality in cojoint resolution, along a
tilted set of axes ¢ for slant), whereAt A f
is still 1/2.

6 Application of the GLT to Detection
of Floating Objectsin Ocean Based

Radar

We apply our transform to radar image
processing for the identification and tracking of
floating targets such as iceberg fragments and
smaller boats, which pose a collision hazard to
navigating vessels. In particular small pieces of
icebergs ("growlers"), about the size of a grand
piano, can do extensive damage to a vessel, but
axe too small to show up on conventional marine
radar systems.

3The approach of Slepif#], who used functions
which are truly rectangular in TF space, can be
extended to chirps. Our "Slepian chirplet” then
represents an ideal parallelogram in TF space.
We may then apply Thomson’s method of
multiple window$5] to our chirplet paradigm.
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6.1 Fourier based Doppler processing
Since a strong component of the radar
backscatter from the target will be "in phase with
itself", due to the cohesiveness of the target, we
can rely on the Doppler characteristics of the
returns. Much work has been done using

classical Fourier based techniques to characterise

floating targetgs, 7]. These techniques rely on
the fact that the targets give rise to backscatter
which has narrow spectral width. An object at
rest has a narrow Doppler spectrum, centered at

zero. An object moving at a constant speed has a

narrow Doppler spectrum centered at the
corresponding Doppler frequency. What we
propose, is a novel way of looking at the time
evolution of this Doppler spectrum.

6.2 Underlying physics of motion
If you have ever watched a cork bobbing up and
down at the seaside, you would notice that it

g |
E |

Figure 7: Sliding window FFT of "growler"
(small iceberg fragment)



goes around in a circle with a distinct
periodicity*

It goes up and down, but it also moves
horizontally. Looking out at a target with the
radar, we see the horizontal component of the
motion which is the Hilbert transform of the up
and down motion. Thus the range variation of
the object (a time series formed by sampling the
"distance" between the radar and the object) has
the same periodicity. This near sinusoidal
periodicity in the range motion of the target
shows up as a "squiggle" in TF space as shown
in figure 7. The target may be characterised by
this snake likeidge or skeleton. (The term
"snake" is due to Terzopou[83%, who develops
a means of dynamically tracking contours, in an
arbitrary image, with energy minimising
splines.)

6.3 Projections of the chirplet as
indicators of Doppler evolution of

floating objects

Two-dimensional slices through the CLT space
allow us to view it on a video display or printed
page. We look at a hyperplane passing through
the space. If we pick the axesnter frequency

and scale, we can immediately recognise a target
based on the constancy over all scale space (see
figure S).

Note also that at higher frequencies, the scale
is higher, the loci of these points indicate an
anti-fractal trend (fractal behaviour usually gives
rise to an affine characteristic: larger scales for
lower frequencies, in other words, "constant" Q).

6.3.1The single-scale chirplet snapshot
revisited

If, however, we choose the same axes as in
figure 6, we can also immediately distinguish the
presence or absence of a

4The well known Pierson Moskowitz (PM)
spectrun8] describes sea surface heights as a
function of time and position. The temporal PM
spectrum is very pesky, indicating strong
periodicity A lowpass filtered (due to growler
inertia) version of the PM spectrum would
describe the spectral characteristics of a time
series formed by the height of the floating object.

floating object, (compare figures 9 and 10), but
in an even more pronounced way. Furthermore,
we have an explicit measure of the target's
"chirpyness”. In other words, we can see the
acceleration signature of the target, and use this
information to fit to a physical model. Such
physical constraints are useful for verification
and also for target tracking. We will refer to this
particular choice of two variable parameters as a
single-scale chirplet snapshot. The term
single-scalerefers to the fact that all the bases
have the same duration, pinysical support (in
this case one second). The wendpshot refers
to the fact that we are glancing at the target at a
particular "instant" (over a short interval of
time) and are not tracking the temporal
evolution of the acceleration signature.

As mentioned earlier, a diagonal slice through
the single-scale chirplet snapshot (along the line
fbeg = fang)is just the Fourier transform (with

the same window as that used in

PR

i

N

(a)
Figure 8: Slices through GLT, along the

hyperplane defined bybeg = fngfor a fixed
temporalcenter defined byt = constant. (a)

With floating object (growler) present. (b) With
sea-clutter only.
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Figure 9: Chirp Logon Transform of one second
of time series from range cell with growler. The
location of concentration of most of the density
shows us that an object, which accelerated from
about On/s to about 0.8vVs during the one

second glance, was present.

the chirplet) of the original time series. In figure
11 (a) we show this slice. If, however, all we
want is one free rameter, we are far better off to
take the slice through the "bowtie" center. In
figure 11 (b) we see that the "Average
Instantaneous Frequency" spectrum (AlF
spectrum) is much sharper than the Fourier
spectrum.

7 Classification usingthe GLT
Problem: Given 1/2 second of radar return from
a particular range cell, decide whether or not a
floating object is present (2 class problem).

To train the classifier, we use 256 single-scale
GLT snapshots, (each one formed from 512

complex samples). We evaluate the performance

based on a testing set which is independent of
the training set.

7.1 GLT snapshot features
We draw 3 features from each GLT snapshot:

® "Entropy": the sum of pixel brightnesses
times the logarithm of these brightnesses.
(The word is in quotes, because entropy
usually deals with random
distribu\-tions). If all pixel brightnesses
are equally probable, we get a high

Aon A
i SO

Figure 10: Chirp Logon Transform of one
second of time series from range cell vata
clutter only.

o FEEE

AVG. INSTANTANBOUS FREQUENCY Alx

fa}
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Figure 11: Slices through the single-scale
chirplet snapshot: (a) A slice along the diagonal
is just the Fourier spectrum. (b) When we shift
over to the== center, however, we obtain a much
sharper peak.

distribution to the data Although
the logon is no longer Gaussian in
the GLT space, the Gaussian fit
allows us to quantify the spread by
the determinant of the covariance
matrix, |S|. These values
correspond to the second-order

moments of the distribution.

® Slenderness: The ratio of largest to
smallest eigenval-ues of S. We have
observed that targets give rise to slender

"blobs".

7.2 Classification Results
The classification results, using 6 different
methods, are presented in Table 1.



—— - m oy e m e —————

"entropy"”. This quantit); Wééﬁgh?or
GLT snapshots which contained no target,

@b]e 1: Classification Results |

and low for those with targets. [ method performance -

® Extent: Target GLT snapshots are much FLD 94%,
more compact, clustered about the mean
epoch of the energy distribution. Those of MICD 95%
clutter, on the other hand, are much more MAP opt thr. 936%
spread out. We fit a bivariate Gaussian NN 91%
kNN (k=8) 95%
WKNN 96%
Vision interface’91
211

We have used Fishers Linear Discriminant
(FLD)[10] in preference to Principal
Components Analysis (PCA) which only looks
at the variance of the features, and requires
scaling in accordance with an assumed a priori
knowledge of the feature importances.

7.3 The Neyman-Pear son Paradigm
We would rather have a false alarm than miss a
target, so theisk function is not symmetric. In
table 1, however, for simplicity, we have
assumed a (binary) symmetric risk function.
Binary risk implies equivalence between the
Maximum A posteriori Probability (MAP)
classifier and the Bayes classifier. Symmetry,
however, can be dealt with by either providing
Receiver Operating Curves (ROCs) or more
simply, by differentiating betweempe 1 errors
andtype 2 errors, by means of@nfusion
matrix.

In our confusion matrices, the first row
represents feature vectors known explicitly to
belong to class 1, while the second row

represents those known to belong to class 2. The

off diagonal elements represent the errors, and
the rows sum to 100%. The upper right entry, for
example, represents the fraction of those feature
vectors which we know belong to class 1, but
which were classified as belonging to class 2.
The ordering of the 6 confusion matrices
appearing in table 2 is the same as the ordering
of the raw performance figures appearing in
table 1. All values axe rounded to nearest integer
percentage (2 significant figures).

from the corresponding exemplars. If, for
example, the distance from the input feature
vector to the "winner" was just a bit less than the
distance to the "runner up", the first and second
weights would be nearly equal. If, on the other
hand, the winner was much closer than all the
others, its class would be weighted very highly
compared to the classes of all the others.

WKNN has another additional advantage: it
gives a Neyman-Pearson output by providing,
explicitly, a real valued class decision. This
feature is useful when Receiver Operating
Curves (ROCs) are desired.

8 Skeletonisation and Time Evolution

of the GLT Snapshot

A single GLT snapshot captures time evolution
of the Doppler spectrum, but we can still do
better by looking at the time




Table 2. Resultzs
of Table 1,
presented as

gonfusion matrices

classad | classed
as

Hﬁoﬂur Operating Curve (ROC)

as
clutter

ok
LT

in

% Prob. of Palse-Alm.
=
=

L 1 = = | 0

[ 100 0 0 10
7 T | %% Prob. of Non-Det,
B L
3% a7

100% | 0%
5% os% |

7.4 Weighted k-Nearest Neighbours
Finally, we propose a variant of KNN, Weighted
k-Nearest Neighbours (WKNN), where we take a
weighted average of the class decisions for each
of, say, k, nearest neighbours. By using a
decaying weighting function, we apply more
confidence to the nearest neighbour than the
second nearest, and more to the second than to
the third, and so on. The weights were set
inversely proportional to the Euclidean distances

Figure 12: Successivgngle-scale chirplet
snapshots of a floating iceberg fragment. The
time evolves from left to right, starting at the top
row (same ordering as in a TV raster scan).
Since the growler is bobbing up and down in the
waves, it will be hidden completely from the
radar at times. The snapshot in the sixth row,
first column, resembles clutter because the
growler is hidden at this time. Note also the
clockwise elliptical locus.

evolution of the GLT snapshot itself. The images
in figures 9 and 10 were just "snapshots" of the
GLT evaluated at a fixed temporal center. If we
move the center epoch of the bases through the
data, we can see, basically, a single prominent
elementary chirp, moving around on an elliptical
locus. (We developed software to display a
"movie" or animation of the successive GLT
shapshots in sequence on the computer screen.
64 of these snapshots appear in figure 12.) We
have coined the term "hypermatrix" for this
structure, which we say has 64 "pages", and the
rows and
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columns of eaclpage make up the image. In
figure 13 the loci of this movement are shown,
for two different sets of 64 snapshots, projected
onto the temporal center axis. (By projection, we
mean the average, summing overmljes of the
hypermatrix, to reduce three "index dimensions"
to two.)

process on the screen as either constant area
ellipses moving and twisting to fit the TF
distribution, or adowties moving around in the
chirplet space.

We are working on a Radial Basis Functions
(RBF) neural network classifier, where our
Logon Expectation Maximizer (LEM) will
become its front end. We may then design an
optimal classifier based on approximation
theonj12] where we are developing an
approximation to this approximation theory,
since we cannot have axact Time Frequency
distributiori13].
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