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1 Introduction

We first recall the standard regression problem. Available is a set of responses
Y = (Y1,...,Yn)' measuring a function f(-) at N locations X,,..., Xy sam-
pled from a distribution Fx. The underscore denotes a vector and X' denotes
the transpose of the vector X; for instance X' = (Xi,...,Xg)" is the col-
umn vector of () explanatory variables. Based on the training sample 7 =
{(Yn,X,,)}n=1,..,n, the primary goal of regression is to estimate the multivari-
ate function f(-) which explains best the association between the predictors X
and the noisy measurement Y. Assuming the noise is additive and unbiased
conditioned on g, i.e.,

Y =f(X)+e with E(e|z)=0,

the predictive performance of an estimate f (+) is often measured by its mean
squared error

. . 2

MSE(f() = BrBx- {f(X*) - f(X9)}, (1)
where the inside expectation is taken over a new explanatory variable X* with
the same distribution Fx as that of X in the training sample 7. While predic-

tion is the primary goal, interpretability of the estimated function f(-) is also
desirable.

A well studied model for such a regression problem is the parametric additive
linear model f(X) = ap + Zq aqX,4, where the coefficients o are typically
estimated by least squares. If the parametric model is correct, then the L, rate
of convergence is in N 1. But, what if the true function f(-) is far from being
linear in each covariate? To avoid bias, nonparametric techniques do not assume
a straight line but let the data fit themselves. The price to pay is a slower optimal
L, rate of convergence typically of the form N—27/7+@) >~ N—1 where 7 is
a measure of the smoothness of f(-) and @ is the number of covariates. Many
scatterplot smoothers (@ = 1) have been developed and achieve an optimal rate
of convergence for an appropriate selection of the smoothing parameter. To
fit general high-dimensional surfaces when the number of predictors is larger
(@ > 1), the number of observations N must grow exponentially with @ to
achieve the same rate of convergence as when (Q = 1. This is known as the
curse of dimensionality.

The nonparametric additive model is a compromise between the rigid para-
metric linear model and the too flexible general high-dimensional nonparametric
model. The nonparametric additive model looks for the closest approximation
to f(-) of the form

Q
fz) = qu(xq)u (2)

where each f,(-) is a general univariate function. The advantage of nonparamet-
ric additive modeling is to avoid the curse of dimensionality, a result of Stone



(1985) who provided the striking result that the optimal L, rate of conver-
gence of each additive component fq() to fu(-) is the same as in the univariate
case (Q = 1), namely of the form N—27/G7+1) when the multivariate function
is indeed additive. Another advantage of the additive model is the ability to
visualize the univariate trends in each covariate and provide a simple interpre-
tation of the fitted model. For estimating additive models from data, two main
approaches can be distinguished:

e The backfitting approach of Buja, Hastie, and Tibshirani (1989) iteratively
applies a univariate linear smoother until convergence.

Properties of the estimate have been studied in many papers when the
univariate smoother used is linear. Buja, Hastie, and Tibshirani (1989)
established the existence of a solution and convergence of a backfitting al-
gorithm for linear smoothers having a symmetric ‘hat’ matrix with eigen-
values in [0, 1]. They also showed that uniqueness of solution is not guar-
anteed because of potential ‘concurvity’. These results have been extended
to other linear smoothers by Opsomer and Ruppert (1997) with local poly-
nomials, by Mammen, Linton, and Nielsen (1999) with local polynomials
and the Nadaraya-Watson kernel smoother, and by Amato and Antoniadis
(2001) with a linear wavelet-based smoother.

Conveniently, the backfitting approach uses the univariate smoothing tech-
nology, but, because the smoothers must be linear, spatially heterogeneous
functions cannot be efficiently estimated. The selection of the smoothing
parameters also remains an open question (Cantoni and Hastie, 2002).

e The Turbo knot selection approach of Friedman and Silverman (1989) is
nonlinear. It assumes that each f;(-) can be written as a parsimonious
expansion on a few truncated power functions defined by their knot loca-
tion. Turbo then performs a stepwise search for the optimal knot location.
If the knots are located optimally, the procedure is efficient even when es-
timating spatially heterogeneous functions. However, the knot selection
procedure is known to suffer from an instability that many practitioners
have observed and that Breiman (1996) has studied.

In this paper, we propose to use the good features of both approaches by
using a nonlinear smoother and a nonlinear backfitting algorithm. In partic-
ular, we consider the recently developed Waveshrink univariate smoother of
Donoho and Johnstone (1994) that enjoys nice theoretical and computational
properties (Donoho, Johnstone, Kerkyacharian, and Picard, 1995). Asin Turbo,
Waveshrink models each f,(-) as a parsimonious expansion on a set of basis func-
tions, but uses wavelets instead of splines. The selection of which wavelets to
use is then carried out by nonlinear shrinkage.

Additive models assume that, not only the underlying multivariate function,
but also the noise is additive. To handle a wider class of noise distributions,



Hastie and Tibshirani (1986) proposed the generalized additive models in the
spirit of the generalized linear model of Nelder and Wedderburn (1972). Under
mild conditions, Stone (1986) extended his convergence results obtained for
additive models, showing that generalized additive models do not suffer from
the curse of dimensionality either. In this paper, we also generalize our wavelet-
based estimator to estimate the components of generalized additive models.

The article is organized as follows. In Section 2, we review Waveshrink, the
nonlinear wavelet-based univariate smoother of Donoho and Johnstone (1994).
In Section 3, we define the AMlet wavelet-based estimator of additive models
and study the convergence of a block coordinate relaxation (nonlinear backfit-
ting) algorithm. In Section 4, we define the GAMlet estimator that generalizes
AMlet to a wide class of noise distributions. Both AMlet and GA Mlet require
smoothing parameters as input. Based on the idea of universal threshold of
Donoho and Johnstone (1994), Section 5 proposes a practical rule for choosing
the smoothing parameters automatically, making AMlet and GAMilet fully im-
plementable in practice. A Gaussian and a Poisson simulation show how well
the universal rule works in practice. The final section discusses our results and
suggests some further areas of research. For clarity, we postpone some mathe-
matical derivations to the Appendix.

2 Review of Waveshrink

We consider the univariate situation when only one predictor is available (Q =
1). Waveshrink is a wavelet-based smoother and, as such, belongs to the class
of expansion-based estimators: it assumes that the univariate function f(-) can
be well represented by a linear combination of approximation ¢(-) and fine scale
¥ (-) wavelets. The standard univariate wavelets are multi-resolution functions
that are locally supported and indexed by a location parameter k£ and a scale
parameter j. A father wavelet ¢(-) such that fol ¢(x)dr = 1 generates pg = 27°
approximation wavelets by means of the dilation and translation relation

bjok(T) = 20029207 — k), k=0,1,...,27° —

they capture the coarse features of the signal. Similarly, a mother wavelet 9 (-)
such that fol Y(x)dx = 0 generates N — pg fine scale wavelets

¢j,k($) :21/2¢(2]$_k)a j:j05"'7<]; kZO,l,...,Qj—].,

where J = log,(N) — 1. Because they are locally supported, the fine scale
wavelets capture the local features of the signal. Unless otherwise stated, we
will assume that the function we want to estimate has the following expansion

290 1 J 291
F@)= " Budiow(@) + D D Viwtin(@), (3)
k=0 Jj=jo k=0



where the wavelet functions {@;, x(-),%;(-)} are orthonormal with respect to
the L, norm. An orthonormal matrix ® can be extracted from these func-
tions that is appropriate for a fixed equispaced design for the sampling lo-

cations z1,...,xn. Hence the function f(-) calculated at the design points
f=(f(x1),..., f(xzn)) has the following wavelet decomposition
I:q)gz[q)o W][g]a

where ® is the N x pg matrix of approximation wavelets, ¥ is the N x (N —pg)
matrix of fine scale wavelets, and 3,7 are the corresponding coefficients. To

simplify notation, for any two column vectors u and v, we write (u,v) for ul
v

To estimate the wavelet coefficients a = (3, 7) from the data
Yo = f(zn) + €n,

the least squares estimate &*° = ®'Y must be regularized because the rank of
® equals the number of observations N. Several regularization techniques have
been proposed: linear (Antoniadis, Gregoire, and McKeague, 1994), nonlinear
(Donoho and Johnstone, 1994) or nonlinear Bayesian (Abramovich, Sapatinas,
and Silverman, 1998). The Waveshrink estimator of Donoho and Johnstone
(1994) has a remarkable ability to estimate spatially inhomogeneous signals
with near minimax results for a wide range of functions (Donoho, Johnstone,
Kerkyacharian, and Picard, 1995). Waveshrink is moreover computationally
efficient. We are particularly interested in soft-Waveshrink, defined as follows:
Define the nonlinear soft-shrinkage function n5°® () = sign(v)(|y| — A)+, where
zy =z if x >0, and zy = 0 if z < 0; then, for a given smoothing parameter
A, the (biased) estimate 4 ,, of the wavelet coefficients shrinks the least squares
estimate componentwise toward zero with the soft shrinkage function

7, =N GE). (4)

Other shrinkage functions have been proposed, but the softshrink estimate has
a useful penalized least squares interpretation: it is the closed form solution
(Donoho, Johnstone, Hoch, and Stern, 1992) to
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1
af&inv)gllz—@gllgﬂb\ > D bisl- (5)
a=2n. j=jo ~=0

This optimization problem defines more generally Basis Pursuit (Chen, Donoho,
and Saunders, 1999) for non-orthonormal matrices, in particular when ® has
more columns than rows. We will be in that situation in the following section.

Waveshrink works well for equispaced observations, a situation which confers
the orthonormality property to ®. Unfortunately this situation is rare in statis-
tical applications where the data are scattered randomly. Many generalization



of Waveshrink have been proposed to handle the non-equispaced situation (see
for instance Antoniadis and Fan (2001) and references therein). The isometric
wavelets of Sardy, Percival, Bruce, Gao, and Stuetzle (1999) have the advantage
of maintaining the convenient orthonormality of the wavelet matrix, a property
we use later for AMlet and GAMlet. It is based on the idea that the mean
squared error (1) is, on the one hand, the expected L, distance between f(-)
and f(-) weighted by the distribution Fx (), and, on the other hand, the ex-
pected Lo distance between f o Fi'(-) and fo F3'(-). Hence the observations
Y can be regarded as equispaced measurements of f o F~1(-); for more details,
see Sardy, Percival, Bruce, Gao, and Stuetzle (1999).

3 AMlet

In this section, we implement Waveshrink as the scatterplot smoother for ad-
ditive models. We study issues such as existence, uniqueness, and efficient
computation of the A Mlet estimate for a given smoothing parameter.

3.1 Definition

Let f = (f(X4),...,f(Xx)) be the values of the function f(-) at the N loca-
tions. Similarly, let Iq be the values of the function fy(-) at the N sampling

points of the gth covariate X, ordered in increasing order by the permutation
matrix F;. Using this notation, the sampled additive function writes

Q
f=2 Pt (6)
g=1

where P is the transpose of P;. In turn, we represent each univariate function
fq as a linear combination of isometric wavelets,

iq = @ng; (7)

where ®, is an orthonormal matrix. Combining equations (6) and (7) we obtain
Q —
f= ZPJ‘I’Q% =: ®a,
g=1

where ® = [P{®1,..., P,®q] with corresponding coefficients a = (o, ...,aq)-
Permuting the columns of ® and correspondingly the entries of o, we also write

=] L].



where ® is the N x Qpg matrix of concatenated approximation wavelets with
corresponding coefficients 8 = (ﬁl, .. ,ﬁQ), and U is the N x Q(N —po) matrix
of fine scale wavelets with its corresponding coefficients v = (y L, Q). Notice
that the matrices P,®, for ¢ = 1,...,@Q remain orthonormal and therefore )
is the concatenation of orthonormal blocks. Because ® has rank N, the least
squares problem must be regularized to estimate a.

We propose the following regularization method. For given smoothing pa-
rameters A = (A1,...,Aqg), we propose the AMlet penalized least squares esti-

mator defined by f, = da, where a = (..., ap) is a solution to
1 Q J 291

Join SV —@allz+> A Y D byl (8)
B =1 j=jo k=0

This regularization induces sparsity in the wavelet representation in the sense
that there exists a solution vector a of which at most N coefficients among
the QN coeflicients are nonzero. The optimization problem (8) is convex and
the function ||Y — -[3 is strictly convex so f , = ®a is unique, independent of
the solution a. However, as for the ‘concurvity’ concern of Buja, Hastie, and
Tibshirani (1989), « itself is not unique, and the individual estimates iq =%,
are therefore not uniquely defined. In fact, the set of solutions a = (8,7)
is not bounded since adding to 8 any linear combination in the kernel of i
gives another solution. (The columns of ®, are linearly dependent since ®y =
[P{®o1,---,PoPoq] and 1 € Range(P;®,) forg=1,...,Q.)

One way to define a unique solution « is to choose the one of minimum /o
norm. This is motivated by the minimum #; norm property of the often used
Moore-Penrose generalized inverse (Albert, 1972) solution to the least squares
problem when the normal equations do not have a unique solution. Hence, we
define the A Mlet* estimator of additive models by taking the minimum ¢2 norm
solution among all the solutions to (8), namely,

a* = argmin ||a||3, where a solves (8). 9)
o

Consequently, the A Mlet* component estimates f: = @QQ; are uniquely defined

for g =1,...,Q. Indeed, the solution set of (8) is a closed convex set, so it has
a unique point whose 5 norm is minimum.

3.2 Solving AMlet’s ¢; penalized least squares problem

We must solve a nontrivial two-level optimization problem, namely (8) within
(9).

To find a solution to (8), we propose to use the block coordinate relaxation
(BCR) algorithm of Sardy, Bruce, and Tseng (2000) which is reminiscent of



Buja, Hastie, and Tibshirani (1989)’s backfitting algorithm, also called Gauss-
Seidel algorithm. Convergence of the Gauss Seidel algorithm has been well
studied for solving a symmetric positive semidefinite system of linear equations.
Our convex quadratic program (8) is more difficult to solve, however, since a
nondifferentiable {1 penalty is added to a convex quadratic function. For further
studies of the BCR algorithm for solving such nondifferentiable optimization
problems, see Sardy, Tseng, and Bruce (2001) and Tseng (2001).
The BCR algorithm exploits two properties: first, the matrix @ is orthonor-
mal union-complete (here, the concatenation of orthonormal blocks P;®,, ¢ =
1,...,Q); second, (8) has a closed form solution (4) via the soft shrinkage func-
tlon when ® = & is orthonormal.

BCR algorithm for AMiet:

1. Choose an initial guess for a;
2. Forq € {1,...,Q}, calculate res, = X—Z#q P!®;a; and solve:

J 291
min [|res, — (P;®q)ay |3 + Aq S ajal-
% Jj=jo k=0

using the closed form solution (4) since P, ®, is an orthonormal
matrix for all g;

3. update a, in a;

4. Tf convergence criterion not met, go to step 2;

In step 2 of the BCR algorithm, a block ¢ must be chosen. A systematic cyclic
rule and an optimal descent rule were proposed by Sardy, Bruce, and Tseng
(2000). When @ is small and the wavelet matrices ®, are orthonormal, we
recommend using the cyclic rule whose convergence is guaranteed by a result
of Tseng (2001). The convergence is also rapid due to the blockwise relaxation
that, at each step, involves Mallat (1989)’s O(N) ‘pyramid’ algorithm.

To find the unique solution a* to (9), we propose for AMlet* the following
algorithm based on the idea of Tikhonov regularization. At the kth iteration
(k=1,2,...), a regularization parameter ¢; > 0 and an accuracy tolerance
are chosen, and the BCR algorithm is applied to

J 291
H(I},n)_”Y <I>a||2+z)\ Z Z |’Yq,~|+5k||a||§ (10)
Jj=jo k=0

until it finds an approximate solution ¢, satisfying

<é d ; < dg, (11
max lr,(as5e) ||22|| <o and  max llry(aseu)lls < 0k, (1)



where 7, (a;€x) is the smallest (sub)gradient of the cost function of (10) with
respect to the gth orthonormal block; see (26) for a definition. By solving (10)
approximately and letting e — 0 and §; — 0 at suitable rates, as stated in the
following theorem, the approximate solutions ¢, are guaranteed to converge to

a*.

Theorem 1: If we choose €, and §; to tend to zero so that
lim (Sk/ek = 0, (12)
k— o0

then the sequence of approximate solutions {q,,} will converge to the unique
AMilet* solution, i.e., the minimum /¢, norm solution a* to (8).
Proof: See Appendix A.

We implemented this algorithm with €511 = €;/3, 6 = 10(ex)” and v = 1.1.
Also, ay_1 is used as the starting point for the BCR algorithm at the kth
iteration for £ > 1. Rapid convergence is observed.

4 GAMlet

Hastie and Tibshirani (1986)’s generalized additive models extend additive mod-
els to a wider class of noise (see also Hastie and Tibshirani (1990)). Introducing
the notation u(-) and 7(-) in place of f(-) to match standard notation of gener-
alized models, generalized additive models assume that the response variable Y;,
is an unbiased measurement of u, = pu(z,) conditioned on the covariates; that
is Yy|z = z,, ~ py(y; ttn, @), where the density function py (-) is parameterized
by its expectation u, and a nuisance parameter ¢. We also assume that the
model is additive in n, = n(z,,) = Zqul N¢(®n,) and that p, and 7, are linked
through

9(Hn) = 1n. (13)
The reason for using a link function (13) is two-fold: First, it ensures the ex-
istence and uniqueness of the estimate by strict concavity of the log-likelihood
I(n;y) = X, 108 py (Yn; in, @). Second, it is often chosen to map the parame-
ter estimate in its domain (e.g., the log link for Poisson). The canonical link
is often chosen for computational convenience since the estimation problem is
constraint-free. In some applications, however, other links should be considered.
In the following, we propose an estimator and an algorithm capable of using non-
canonical links; as long as the log-likelihood function is strictly concave, e.g.,
the identity link for Poisson.

4.1 Definition

We consider a penalized likelihood approach and generalize A Mlet by replac-
ing the quadratic term in (8) with the negative log-likelihood function of the



assumed noise distribution. For given smoothing parameters A = (A1, ...,q),
we define the GAMiet estimator 7) \ = ®a as the solution to

J

N
[u

Q J
min —I(n;Y) + Z Aq Z Yaj | With n= daandneC, (14)
J=jo

r.a=(E:1) =1 *=0 |
where I(n;Y) = ZnNzll(nn,Yn) and C = C; x -+ x Cn and C), denotes the
domain of I(+;Y},). Assuming that the negative log-likelihood function is strictly
convex in 7 for a judicious choice of the link function g(-) in (13), we have the
following two important properties: sparsity in the wavelet representation and
uniqueness of the estimate 7 K

As with AMlet, the solution a to (14) is not unique and the set of such solu-
tions is not bounded. To achieve uniqueness, we define the GAMlet* estimator
of the components 7, of generalized additive models by taking the minimum
£5 norm solution among all the solutions to (14):

a* = argmin ||al|3, where a solves (14). (15)
a

The solution a* is defined and unique since the solution set of (14) is a closed
convex set, so it has a unique point whose ¢ norm is minimum. Hence the
GA Mlet* component estimates ﬁ; = @QQZ are uniquely determined.

4.2 Solving GAMlet’s /; penalized likelihood problem

Our definition of GAMilet allows the use of a non-canonical link function by
means of constraints in (14). In the Poisson case, for instance, both the log link
and the identity link satisfy the strict convexity assumption on the negative
log-likelihood; the canonical link maps 7 € R to u € Rt without constraints,
whereas the identity link requires constraints in (14) with C = [0, 00)™. To solve
the constrained optimization (14) in the univariate situation, Sardy, Antoniadis,
and Tseng (2003) employ a primal-dual log-barrier interior point algorithm. The
multivariate situation (@ > 1) demands a new algorithm to find the minimum
£> norm solution. One approach for GAMlet* is Tikhonov regularization used
in Section 3.2 whereby, at each iteration, an interior point algorithm is ap-
plied to solve approximately a regularized version of (14) analogous to (10).
The Tikhonov regularization parameter and the solution accuracy tolerance are
decreased after each iteration. We describe such an algorithm and prove its
convergence in Appendix B.

A conceptually simpler approach is the following two-stage algorithm: First,
find any solution to (14) using, for instance, the algorithm of Sardy, Anto-
niadis, and Tseng (2003); second, find the unique £» norm solution by solving a
quadratic programming problem based on the solution found in the first stage.

10



Specifically, letting

Q
p*=%®x and (*= Z)\q||1q||1 (16)

g=1
for any solution o = (8, ) (14), then the problem of finding the minimum
{5 norm solution o* = (8*,y ) can be set up as a convex quadratic program of

the form:
: 2 : T % *
min 85 with Sa=u and Do Alylsc. (D)
a=\F>7. g=1

Indeed, by strict convexity of —I(-;Y), u* = ®a is unique, independent of the
solution a to (14). Since the minimum objective value of (14) is also unique, this
means the real number ¢* is unique, independent of the solutions a to (14). In
fact, (16) are necessary and sufficient conditions for a = (8,7) to be a solution
o (14). -

The second stage optimization problem (17) can be solved by a primal-dual
interior point algorithm of which we give the main steps. Letting a* = ({*, u*),

! !
A = ®;®) with &) = [0,®)] and B = [ A A ] with A = (\11,...,Aql),

¥ -9
the dual problem is

1
maxy'a* — Ey'Ay with B'y <0,
Y yay y

where y is the dual variable (not to be confused with the response variable Y).
The reason for solving the dual and the primal together is that the duality gap
is zero, and a solution to the primal problem yields as a byproduct a solution
to the dual and vice versa (Rockafellar, 1984, §11D). Consequently, the conver-
gence can be monitored by measuring the gap between them. The log-barrier
subproblem associated with it is

1 2Q(N—po)
min, —y'a" +5Y y' Ay —p Z log(—B,y),
where p > 0 and B, is the pth column of B. By introducing the slack variable
z = —B'y, the Karush-Kuhn-Tucker conditions are
-B'y—z=r, =0,
—Ay-Bz=r, =0,
pl—Xz=1r, =0,

with 2 > 0, 2 > 0. The Newton directions are Az = r, — B'Ay, Az =
Z7Y(r, — X Az) with Ay being the solution to

(A+BDB')Ay =r, — B(Z"'r, - Dr,),

11



where D = Z71X. Since the left-hand matrix is symmetric positive definite
and involves fast matrix multiplications, we can solve the linear system with
the conjugate gradient algorithm. There has been many convergence studies
(Kojima, Megiddo, and Mizuno, 1993) of interior point algorithms, and rapid
convergence is achieved if the initial point is close to the optimal solution.

5 Automatic selection of smoothing parameters

In the univariate situation ) = 1 and for Gaussian noise, Donoho and Johnstone
(1994) proposed to select the smoothing parameter of Waveshrink with the
universal rule that is based on an asymptotic consideration. Donoho, Johnstone,
Kerkyacharian, and Picard (1995) proved that, with the universal smoothing
parameter A = 0+/2log N, Waveshrink is nearly minimax for a wide variety of
loss functions and for a wide range of smoothness classes. The definition of the
universal rule has been generalized to other distributions in Sardy, Antoniadis,
and Tseng (2003).

We now derive the universal rule for AMlet (assuming near Gaussian noise)
and for GAMilet in the multivariate situation ) > 1. The universal smoothing
parameters A;(N),...,Ag(IN) control the amount of smoothing of each of the
@ smoothers. Defined for any concave likelihood I(+;Y"), the smoothing parame-
ters must have the asymptotic property (18) of the following proposition under
constraints (19). We present rules for selecting smoothing parameters having
such a property for the cases of Gaussian and Poisson distributions.

Proposition 1: Suppose that the signal Y has a log-likelihood function I(-;Y)
defined on a domain of the form C' = Cyx: - -xCp, where C,, denotes the domain
of I(- ;Y,). Suppose that the parameters of interest are a linear combinations
of the QQpo approximation wavelets only, i.e., Ny = (i)oﬁo for some éo such that
(i)oﬁo € C, and suppose that the log-likelihood is concave and differentiable in
n on C. Then the universal parameter Ay = (A1,...,Ag) is defined as the
smallest A(N) = (A (N), ..., Ag(V)) such that

N—oo

P{[ T Pyllec < M), .-, 185 Poyllec < A@(N)} =" 1, (18)

where the random vector y together with some n € C' and 3 satisfies

=Vl Y)+y = 0,
By = 0, (19)
(Poﬁ = Q
Furthermore, we can bound from below the desired probability by
Q
1= P{I%,Pyylloc > Xg(N)}; (20)
g=1

12



since the dimension () of the predictor space does not increase with N, we obtain
the desired asymptotic property (18) provided each term in the sum goes to zero
as N goes to infinity.

Proof: The proof is similar to that of Sardy, Antoniadis, and Tseng (2003,
Appendix B) after writing the Karush—-Kuhn—Tucker conditions for (14):

0,
[_)‘qla )‘ql] q= 15"'5Q)
0,
n

-Vl Y) +y

&
e,
B

N m

ho
o
[
+
LS
)
Il

O

For the Gaussian distribution, a single universal parameter Ay = --- = Ag =
o+/2log N provides A Mlet with the desired convergence of each term of the sum
in (20) as the sample size tends to infinity. The universal smoothing parameter
is appropriate for obtaining estimates with good visual appearances, but it tends
to oversmooth. In the univariate situation, the minimax threshold (Donoho and
Johnstone, 1994) is known to be better than the universal threshold in terms
of mean squared errors. We will investigate in the Monte Carlo simulation
of Section 6 how the minimax threshold performs in the multivariate additive
model situation. In practice, the standard deviation o of the noise is rarely
known. For univariate signals, Donoho and Johnstone (1995) propose to take the
median absolute deviation (MAD) of the fine-scale wavelet coefficients rescaled
by 1/0.6745 for Gaussian noise. In the multivariate setting, this approach cannot
be applied directly, but an estimate of ¢ can be obtained at each iteration of
the BCR algorithm by taking the MAD of the fine-scale wavelet coefficients in
the gth direction, namely

& =MAD | O} P,(Y. - Y P{®;q,) | /0.6745,
i£q

or the rescaled median absolute deviation of the residuals. While Theorem
1 guarantees the convergence of the Tikhonov-based BCR algorithm to the
minimum £, norm solution for a fixed smoothing parameter, such a convergence
guarantee has yet to be shown when ¢ is updated at each iteration. In practice,
it does not seem to prevent convergence.

For additive but long-tailed noise, a robust version of AMlet can be derived.
Because it is based on an ¢5 loss function, AMlet is appropriate for symmetric
noise distributions, but the tails should not depart drastically from that of a
Gaussian distribution. For heavy tails distributions, e.g., e-contamination, a
robust extension of AMlet can be developed by replacing the £y loss function
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in (8) by a robust loss function p(-): we define the RAMlet* estimate as the
minimum ¢ norm solution a* to

J 291

mln ||s—tI>a||p+Z)\ Z Z |'7q],.; (21)

Jj=Jjo k=0

where ||w||, = Zﬁzl p(wy). For the Huber loss function (Huber, 1981) in the
univariate situation (@ = 1), Sardy, Tseng, and Bruce (2001) show how to
transform (21) into a problem for which the efficient BCR algorithm converges
to the optimum. Their results generalize to the multivariate additive situation
(@ > 1) as well. They also give rules on how to choose the smoothing parameters
in that situation.

For the Poisson distribution, we use the level dependent universal thresh-
old derived by Sardy, Antoniadis, and Tseng (2003) using results from Poisson
processes, namely,

A = Mo, (), ¥5(-)2°\/21og N/ VN, (22)

where

Mg (0, %5) = (5300 [ 1/, 9
This selection of the regularization parameters, which assumes by (20) that
each component is positive, provides the desired asymptotic property of each
term of the sum in (20). A rough estimate of the constants M (no,(-), ¥;(-))

is required. We estimate Mo, using AMlet on Y, = 2/Y, + 3/8. Indeed, the

Anscombe (1948)’s variance stabilizing transformation makes the data approx-
imately Gaussian Y;, ~ N(2/n(z,,), 1).

6 Simulation

The goal of the simulation is to investigate the finite sample performances of
the wavelet-based estimators and to compare them to existing estimators. In
Section 6.1, we consider the most standard scenario where the measurements’
noise is additive and Gaussian, while, in Section 6.2, we perform a simulation
with Poisson noise. We considered the scenario where the covariates are unifor-
mally and normally distributed (and rescaled) on [0, 1], but, because we obtained
comparable results, we only report here results with the uniform distribution.
AMlet* and GAMlet* remove the indeterminacy of the AMlet and GAMlet
penalized likelihood problems and define unique component estimates by taking
the unique, but arbitrary, minimum /s norm solution among all the solutions.
However, by no means are the unique component estimates optimal in the mean
squared error sense; it is only a convenient way of defining a unique estimate.
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In the Monte Carlo simulation, we measure the performance of the AMlet and
GAMlet component estimates f; after mean-centering them around the mean
fq of the true component f, to calculate the squared errors

N
~ 1 N - _
SE(f2()) = 3 S AFalong) = falwng) = (Fy = F)P? (23)
n=1
for g = 1,...,Q. We then average these values over the Monte Carlo runs to

estimate the natural mean squared error criterion, the Lo distance weighted by
the marginal density of the covariates.

6.1 Gaussian noise — Uniform covariates

We conduct in this section an extensive simulation based on the results obtained
by Amato and Antoniadis (2001). They compared three estimators: the spline-
based estimator addreg of Nychka, Bailey, Ellner, Haaland, and O’Connel (1993),
the local polynomial-based estimator addfit of Opsomer and Ruppert (1997) and
their wavelet-based estimator Wavelet direct separation. addreg gave the best
results and did not have occasional convergence problems as addfit did. More-
over, addreg naturally provides an estimate at the sampled points to estimate
the natural mean squared error (1), as AMlet does. Using the binning step to
coerce the data on an equispaced grid (that must unfortunately be coarse to
prevent some bins to have zero observations), Wavelet direct separation does
not provide an estimate at the sampled points, and thus does not allow direct
use of the natural mean squared error criterion. The signal-to-noise ratio of the
simulation of Amato and Antoniadis is small, and consequently the numerical
results reported in the tables have much uncertainty. Moreover, the functions
used are rather smooth, which favors linear estimators. Nevertheless, Amato
and Antoniadis (2001)’s simulation is insightful and provides a basis for com-
parison in our simulation, which takes the best estimator addreg of the three in
their study as the reference estimator.

Based on these considerations, we design the following Monte Carlo exper-
iment to compare the nonlinear wavelet-based A Mlet estimator to the linear
spline-based addreg estimator. We choose sample sizes N equal to 29, 2!, 213,215
to study the evolution of the relative efficiency of the estimators when the sam-
ple size increases. The large sample size 2!5 = 32768 will highlight the storage
and cpu time advantages of A Mlet. Correspondingly, we repeat the Monte Carlo
experiment M times with M equal to 320, 80, 20, 5 to obtain an equal number of
terms in the estimated mean squared errors across sample sizes. We choose the
number of covariates () = 4 for two reasons: first, additive models are typically
used when the number of covariates is larger than two, and second, treating the
case @ = 2 in simulations might hide computational or conceptual weaknesses of
certain estimators in higher dimensions. We use the following @ = 4 functions
defined on [0, 1]:
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o fi(z) is the relatively smooth heavisine function (Donoho and Johnstone,
1994);

e fo(x) = 0 is the smooth zero function which represents a non-significant
variable as in the simulation of Friedman (1991, §4.3 p. 37);

e f3(x) is the piecewise constant blocks function (Donoho and Johnstone,
1994);

e f4(x) is the continuous but erratic bumps function (Donoho and Johnstone,
1994).

The nonzero functions are then scaled to have a ‘standard error’ equal to 3:

1 ) ) 1
/ (f(z) — f)?dz = 3%, where f= / f(x)de.
0 0

We choose a standard deviation of o = 0.05 for the Gaussian noise to obtain a
large signal-to-noise ratio for the four test functions. We choose the wavelets
used by AMilet to be the least asymmetric wavelets with 8 vanishing moments,
and we fix the number of approximation wavelets in the linear expansion at
jo = 5. We note that our results are not sensitive to these choices. A more
important issue is the automatic selection of the smoothing parameters. For
AMilet, we use either the universal or minimax threshold rules discussed in
Section 5. For addreg, generalized cross validation is used.

Figure 1 illustrates typical outputs for the three estimators for N = 8192.
For the two AMlet estimates, the universal smoothing parameter provides a
smoother appearance, but a worse mean squared error, than the minimax one.
The spline-based estimate performs well on smooth functions, but looks wiggly
on erratic functions.

Figure 2 reports the estimated mean squared errors (on a log-scale) in a
boxplot summary. The layout of the boxplots reveal some interesting features.
First, the rate of convergence of the mean squared error is faster for A Mlet than
for addreg when estimating non-smooth functions. Second, the minimax rule
gives better results for AMlet than the universal rule in terms of mean squared
error. Third, observe that there is no results for addreg when N = 215 as the
code crashed, possibly due to the high memory needed to build the smoothing
splines’ matrix. With wavelets, there is no need to build or store a matrix, since
operations are performed with the O(NN) wavelet filter, making it suitable for
data mining of large data sets.

6.2 Poisson noise — Uniform covariates

A simulation for generalized additive models is less common in the literature, so
we extend our simulation of Section 6.1 to Poisson noise to investigate the finite
sample properties of GA Mlet. However, we cannot compare the performance of
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Figure 1: Typical estimates from the simulation of §6.1 and §6.2. Row-wise:
raw Gaussian data, true function, A Mlet universal and minimax, addreg, and
GAMlet from Poisson data. (The raw Poisson data is not plotted since it is
visually similar to the Gaussian data). Note: the striations in the upper left-
hand plot is a plotting artifact.
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Figure 2: Gaussian simulation of §6.1. Boxplots of the squared errors on a log-
scale. ‘1’ is for AMlet universal threshold, ‘2’ is for A Mlet minimax threshold
and ‘3’ is for addreg GCV. Least asymmetric wavelet of order 8 with jo = 5.

GAMlet to existing generalized additive model estimators because the latter all
use a link function (e.g., log-link) to make a constraint-free estimation (Hastie
and Tibshirani, 1986). In contrast, GAMlet can handle constraints such as
positivity of the Poisson parameters by using the identity link. Using the log-
link or the identity link creates two different models since the log-linear model
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effectively transforms the additive model into a multiplicative model for the
Poisson parameter:

Q Q
fin = €xp {an(mnq)} = [1 exp{ng(any)}-

Because the underlying models are different, a simulation to compare estimators
with two different link functions on the basis of mean squared errors criterion
is not meaningful. Instead, we report a simulation based on the assumption of
a true additive model (i.e., identity link) to investigate how GAMlet estimates
smooth and non-smooth functions. For the Gaussian simulation, we generate
) = 4 independently uniformally distributed covariates. The Poisson random
responses are generated according to the model assumed by GA Milet, i.e., with
Poisson parameters modeled as the linear combination of the four components
directly. The linear combination is therefore positive by construction. For the
automatic selection of the smoothing parameters, we use the universal threshold
(22) that we derived for the identity link.

heavisine zero blocks bumps

1 T 2.5

a0 15! &5 ’ T
o ? 2 [ 1 o B
: T %I 1.5 J: tjil

0.5

=
A
- - I

< Tofe :
] N S =
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9 11 13 9 11 13 9 11 13 9 11 13

Figure 3: Poisson simulation of §6.2. Boxplots of the squared errors on a log-
scale for GA Mlet with smoothing parameters chosen automatically. Least asym-
metric wavelet of order 4 with jo = 2.

The bottom row of Figure 1 shows typical GAMlet estimates for N = 8192.
Despite the oversmoothing effect that we impute to the universal threshold,
the estimates reproduce important features of the underlying smooth and non-
smooth functions. The complete results of the simulation are presented in Fig-
ure 3, where boxplots of the estimated mean squared errors are plotted against
increasing sample sizes. As for AMlet, we observe that the rate of convergence
of GAMlet for Poisson noise is faster for erratic functions than for smooth func-
tions.
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6.3 CPU time

In terms of computational efficiency, the block coordinate relaxation BCR al-
gorithm for AMlet is fast and easy to program in a high level language such
as S-Plus or Matlab. As opposed to spline-based techniques which require the
storage of matrices, AMlet uses the discrete wavelet transform filter and can
therefore be used on massive data sets for data mining purposes. In contrast,
we were unable to run addreg for sample sizes of N = 215 and larger (NA entry in
addreg column of Table 1). By using Matlab’s ‘cputime’ function, we can make
a rough comparison of the computational complexity of the spline-based and
the wavelet-based estimators. In particular, addreg is programmed in FORTRAN
while AMiet is programmed in Matlab, a slower language. Despite this disad-
vantage, A Mlet compares favorably with addreg, especially for the universal rule.
The interior point algorithm for GAMiet is CPU intensive when programmed
in Matlab, but could run in a timely manner if programmed in C, for example.

Table 1: CPU time comparison in seconds as a function of sample size.
N | addregt  AMlet? AMlet!  GAMlet!
GCV  minimax universal universal

512 0.8 1.0 0.4 50
2048 14 3.0 1.3 150
8192 6.6 8.5 4.1 800

32768 NA 23 14 NA

T FORTRAN code.  Matlab code

7 Conclusion

To fit or not to fit additive models well might be answered by A Mlet and GA M-
let: the two wavelet-based estimators fit nonlinearly and nonparametrically the
smooth and nonsmooth components of additive models and generalized additive
models. The AMlet estimator is particularly useful when the data set is massive
since no existing estimators can estimate additive models automatically in that
situation. AMlet is also useful when some components of the additive model
are believed to be erratic. Moreover, it is easy to program as all it requires
is an ordering of the covariates, a wavelet transform, and a ‘while’ loop until
convergence. We recommend using the universal threshold to select significant
covariates or to obtain a visually pleasing model, and the minimax threshold for
good prediction in the mean squared error sense. GA Mlet has a higher computa-
tional complexity, but has the advantage of handling constraints for generalized
additive models.
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The definition of AMlet and GAMlet can also be generalized to semipara-
metric models, and their corresponding optimization problem can readily be
solved by the proposed algorithms. We also see a possible extension of A Mlet
and GAMlet to the more general Projection Pursuit (Friedman and Stuetzle,
1981) model that is also additive, but not necessarily in the canonical direc-
tions. Using wavelet-based scatterplot smoothers within the Projection Pursuit
framework is an interesting area of research.

8 Software availability

The AMlet and GAMlet Matlab codes are downloadable at
http://statwww.epfl.ch/people/sardy/Tar/AMlet.tar.gz

and

http://statwww.epfl.ch/people/sardy/Tar/GAMlet.tar.gz

The Figures are also reproducible using the functions provided. We make use
of the Wavelab toolbox developed at Stanford
http://www-stat.stanford.edu/~wavelab/

The addreg code is available on
http://www.cgd.ucar.edu/stats/Software/Funfits/
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A Convergence proof for AMlet*

For simplicity and without much loss of generality, we consider the case of a
common smoothing parameter A\, = A for all ¢ = 1,...,Q. Let C be our
original cost function (8), namely,

J 29-1

Q
Ola) = 51V - Balf+ 2330 3

q=1j=jo k=0
and let o denote the unique solution to (10). Then

Claz) +exlleills < Cla”) + exlla’(l3. (24)
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Since a* solves (8) so that C(a*) < C(a}), the above inequality yields
llaills < lla*|13- (25)

Also, either by direct calculation or by using the fact that r(a;e€) is the smallest
subgradient of the convex function C(a) + €||a||3 at a, we have for any o and &
that

C(a) +ellall; +r(a;€)'(@—a) < C(@) + €lall3,

where the ith element of the subgradient r(q;e€) is

ViC(Q' 6) if a; = ,Bz
ri(ase) = q Vic(as€) + Ayif|yl i |vi| # 0 i=1,....,NQ,  (26)
Vic(a;e) +mi if || =0,

with 7; = argming<y <x [Vic(a; €) + 1| and c(a; €) = 3[|Y — Balf; + ella/f3.
Then, letting € = €, & = a}, and using (24), we obtain

Cla) +exllell} < Cla*) +exlle®|l3 + r(aer)'(a — af)

Q

= C() +ella*llz+ D rylae) (@, — (af)q)
q—l

< Oe") +exlle” ||2+Z|| a;se)|l2llag — (ak)qll2
g=1

< Cla®) +elle’|3

Q
emax llry(a; ex)ll2 - ;(ngﬂz + [[(ak)qll2)-

Letting a = oy, and using the fact that a satisfies (11) yields

Q
Clagrr) + ekllagalls < Cl@”) + exlla®ll3 + 6k + 6 Y _ [1(@f)qll2
q=1
< O(@) +ella’(ls + 0k + 0xQlla*|l2, (27)

where the last inequality uses (25). Since a* solves (8) so that C(a*) < C(a1),
the above inequality yields

g ll3 < llell3 + (3, /ex) (1 + Qllel2)- (28)

This together with (12) implies that ||ay 4|2 is bounded as & — oo, so {ay,}
has cluster points. By (27) and {ex} — 0, {0} — 0, we see that any cluster
point & satisfies

C(a) < C(a*).
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Thus & is a solution to (8). Moreover, (28) and (12) yields in the limit
llallz < lla*|3-

Since a* is the unique minimum ¢» norm solution to (8) (the solution set of (8)
is a closed convex set, so it has a unique point whose £3 norm is minimum), this
implies @ = o*. This shows that {a;,} is a bounded sequence of points with
o* as its only cluster point. Hence {a;,;} = a*. 0

B Algorithm and convergence proof for GAMlet*

For simplicity and without much loss of generality, we consider the case of a
common smoothing parameter A, = A for allg =1,...,Q. We wish to solve the
two-level optimization problem (15), i.e., find the minimum £2 norm solution to

min —1($a;Y) + Alllh- (29)
a=(8,7) -

We consider a solution approach based on Tikhonov regularization whereby, at
each iteration, we apply a primal-dual interior point method to solve approxi-
mately a regularized problem of the form (e > 0):

. = €
min —I(®a; Y) + Allylls + s [lel3. (30)
a=(8,7) 2

To ensure convergence, € is decreased towards zero after each iteration and the
solution accuracy tolerance is decreased towards zero sufficiently fast relative to
€ and the log-barrier parameter p. As in Sardy, Antoniadis, and Tseng (2003),
we assume for all n = 1,..., N that —I(;Y,) is twice differentiable, its second
derivative is always positive, and its first derivative tends to —oo and +o0 at
the left and right endpoints of its domain C,. This assumption is satisfied
for the Gaussian and the exponential distribution, as well as for the Poisson
distribution with positive counts.

First, we describe how to apply a primal-dual interior point method to solve
(30). Following the derivation in Section 4.2 on GA Mlet, we rewrite the primal
problem (30) as

. = € €
min  max —I(p;Y) + Allyll +¢'(n — @) + ' (¢ —7) + S 1815 + 5 I<I15-
n€C,a=(8,7),{ ¥ 2 2

Interchanging “max” and “min” gives the dual problem

1, = 1 -
maxh(y;Y) - 516yl — 5[0l with ~AL< @'y +0 <AL y €K,

Y.
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where K is the domain of h(-;Y). Notice that, as ¢ — 07, the above dual
problem reduces to the dual problem (5) of Sardy, Antoniadis, and Tseng (2003).
The corresponding log-barrier subproblem is

. 1, - 1 _ _
min —h(y; Y)+ o1 Boyl3+5_[lull5—p Y logA=Tpy—vy)—p > Jlog A+ T} y+vp),
p

yv
- p

where p > 0 and h(y;Y) = min,ccy'n — I(n;Y). By introducing the slack
variables 2 = (2,2 ) = AL = ¥'y —0, AL+ ¥y +v) and z = (z,,2_) =
p((Zy)711,(Z_)~11), the Karush-Kuhn-Tucker conditions for the subproblem
can be written as

1. _ _ _

~Vh(y;Y) + ;<I>0<I>6g+ g, —Vz = 0
1

;U+$+_3L =0

—v-Uy+Al-2, = 0

v+Py+Al—2z = 0

pl—Xz = 0

Here X = diag(z) and similarly for Z, Z; and Z_. Eliminating v and letting
B= —%(I)f)g and A= [¥ —V¥], B=[I —1I],c= A(1,1) and letting pmin(y;Y) =
—Vh(y;Y), this can be written equivalently as

—pmin(y;Y) + ®of — Az =:r, =0

eB'Br—Ay+c—2z =ir,=0
pl—Xz =:r,=0 (81)

—By-B =iy =0

The corresponding Newton equation has the form:

QAy — DA = r
BoAy +eAB = rg,

where P = diag(—p.,.(y;Y)) and Q = P+ A(ZX ' + eB'B)~' A’. The above
system of equations can be solved by applying the conjugate gradient method
to its least square reformulation. Then (y,3) is updated by moving it in the
direction (Ay, AB) and similarly for (z, 2), p is decreased, and the process is re-
iterated (Sardy, Antoniadis, and Tseng, 2003), (Kojima, Megiddo, and Mizuno,
1993).

Now we describe the algorithm for finding the unique minimum ¢ norm
solution to (29). At the kth iteration (k =1,2,...), a regularization parameter
€r > 0 and an accuracy tolerance dy > 0 are chosen, and we apply a primal-dual
interior point method, with (z,y,z,3) and p suitably initialized (either from
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scratch or using values generated from the previous iteration), to solve (30)
with € = €. We terminate the method when the current (z,y, z,8), together
with the current log-barrier parameter p, solves (30) with accuracy d; in the
sense that

r, Z _epla (32)

e ll < 8k, IVI(®a+r,;Y) — VI(®a;Y)|| < 6,
sl < 0k Vol < Ok, /P < Ok,

where we let v = Bz, a = (8,7), § > 0 is some constant (independent of k),
and the norm || - || can be any £, norm (1 < p < oco). The condition (32)
is satisfied provided the interior point method maintains r,/p to be uniformly
bounded below componentwise. The condition (33) is satisfied after a finite
number of interior point iterations provided the method maintains ®a and -y
to be bounded and drives r,,r,,7,,73 and p to zero, as is generally the case.
Then, we choose an €1 < € (e.g., €x+1 = €;/3) and a d41 < O, and set q,
to be the a corresponding to the (z,y, 2, 3) satisfying (32) and (33).
We claim that, by choosing € to tend to zero and by choosing d; so that

(33)

lim 6k/€k =0 (34)
k—o0

(e.g., 0 = (ex)”, with v > 1), then {a; } would converge to the unique minimum
2-norm solution a* of (29). To see this, note that since a* = (8*,7*) solves
(29), then

0=-%'VI(2a";Y) + (0, \"), (35)
for some subgradient n* of || - ||y at v, i.e.,
1 if v, >0
BT = § L1 iaf =0
-1 if v5 <0

Fix any k and any (z,y, 2, 8) and p satisfying (32) and (33). Let

M=Q(N —-p), ~y=-Bzx=z_-2z,, a=(6").

Then we have from (31) that

Vh(y;Y)+®a = 1, (36)
—ey—Wy+Al—z, = r,, (37)
ey+¥y+A-2 = r,_ (38)
Xz = 1, (39)
By +ef = —Tg (40)

Fix any p. We consider three cases:
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Case 1. v, > /p: Since v, = Taryp — Tp and z > 0, this implies zar4p > (/P s0
(39) and (32) yield

p—(rz)myp _ p+6p
= < < (1+6)/p.
ZM+p T4y = Ty ( + )\/ﬁ

In this case, let 7, =1 — 2p4p/A and 7, = 1. Then
o = 7lp| = 2a4p/ A < (1+6)V/P/A, (41)
and we have from (38) that
eYp + Uy + Mip = (re) Mp- (42)

Case 2. v, < —/p: Since vp = Tamryp — Tp and z > 0, this implies z, > /p so
(39) and (32) yield

Tp Tp

In this case, let 7, = —1+ z,/A and 7j, = —1. Then
np = Mpl = 2p/ X < (1+6)v/p/A (43)
and we have from (37) that
Yp + Wy + Mjp = — (7). (44)
Case 3. |y,| < \/p: By summing (37) and (38), we obtain

201 — (Zp + zM+p) = (Tw)p + (Tav)M+p

so that
(2p + 2m+p) — - (rz)p + (ra) Mtp
2 2 '
In this case, let 1, = (2, — 2m+4p)/(2A) and 7, = max{—1,min{1,7,}}. Since
2p > 0,2p4p > 0, then

(2p + 2M+p) -1 (re)p + (re) Mp
2\ 2 '

It follows from the definition of j, that

mp| <

N -1 if >1 (rz) + (rz)M
1y — Mp| = {l)npl lels|2p| < | £ X +p|- (45)

Also, subtracting (37) from (38) and then dividing both sides by 2 yields

€Yp + ‘il;y + Anp = ((re) map — (T2)p) /2. (46)
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Then, we have from (36) and the observation that n = —Vh(y;Y) if and

only if —VI(n;Y) =y (i.e., =Vh(+Y) is the inverse function of —Vl(7-;£)) that
y=-Vi(®a+r,;Y)=-VI(®xY) —r,
where we let ry = VI(®a+r,;Y)—VI(®a;Y). Substituting this into (40) yields
—®VI(d;Y) + €8 =1;.
where we let r; = ®4r, —r5. Also, we have from (42), (44), (46) that
—U'VI(®a;Y) + ey + Anp = ¥'ry + 1y,

where (ry), is either (rg)aryp or —(rz)p or ((rz)m4p — (rz)p)/2, depending on

which case. Then, letting r = (r;, ¥'ry + r,), we obtain
—@'VI(®;Y) + ea + (0, An) =r.
Subtracting (35) from this yields

r—ea=®'(=VI(®a;Y) + VI(®a*;Y)) + (0, A(n — 17%))

so that
(a—a")(r —ea)
= (®a- ") (-VI(®xY) + VI(®a*;Y)) + Ay — ") (n —n%)
> My—=7")'(m—n")
= A o =) =) + X D (v —73) (i — 1)
|7P|2\/ﬁ |’Yp|2\/f’
+A Z V(M — 77;) —A Z 7;(77;; = lp)
|'Yp|<\/ﬁ |'Yp|<\/ﬁ
A D) (0= —mp)
ol <P
> A D =) =)+ A D v —mp)
|’Yp|2\/ﬁ |’Yp|<\/ﬁ
—A Z Vp (Mp — 7ip)
Iyl <P
> = > - wla+0ye-x > /bl —n}l
[vp|>vP [vp1<\/P
1 *
9 Z |7p||(7'z)p + (1) Mol
|'Yp‘<\/ﬁ
= -7,
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where the first inequality uses the convexity of —I(-;Y) so that —VI(-;Y) is
monotone. The second inequality uses the monotone property of I'(-) and the
observation that 7, € T'(v,) for all p and 7, € T(v,) for |y,| > \/p and %, € T'(0)
for |v,| < y/p- The third inequality uses (41), (43), (45). This implies

lle 13 lla* = all3 + llell; +2(e* - 2)'a

> [la* —all; +llell; +2(e* —a)'r/e—7/e. (47)
Also, using (45) and the definition of #, we see that

0<# < C(llve + vo + llzallve + lire) (48)

for some constant C' > 0 depending on A, v*,n* only.
By our choice of ay, we obtain from (47) that

lla*l13 > llewll + 2(a* — )"ty /ex — 7 /ers

where r;, and 7y, are the corresponding r and 7#. We see from (33), (34) and (48)
that 7 /er — 0. Similarly, we see from the definition of 71 and (33), (34) that
7ell2/€x — 0. Using the Cauchy-Schwartz inequality (ay)'r, < |lagll2llrsll2
and rearranging terms, we obtain the inequality

llagl3 = 2l llobe = lla™|l5 +cx <0,

where we let ¢, = 2(a*)'r,/er — Fr/ex — 0 and by = ||rg||l2/€x- This is a
quadratic inequality of the form t2 — 2bt — ¢ < 0 with ¢ > 0, which has solutions
0<t<b++b?+c. Thus

laglla < /(00)2 + lla 13 - .

Since by, — 0 and ¢ — 0, this implies {aj} is bounded and any cluster point &
satisfies
llallz < lla*(l2-

Moreover, it can be argued using (31), (32), (33), (34) that & satisfies the 1st-
order optimality condition for (29). Since (29) is a convex program, this implies
a is a solution to (29). Since a* is the unique minimum 2-norm solution to (29),
this implies @ = a*. This shows that {¢, } is a bounded sequence of points with
a* as its only cluster point. Hence {¢;} — a*. 0
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