# PENDANTSS: PENALIZED NORM-RATIOS DISENTANGLING ADDITIVE NOISE, TREND AND SPARSE SPIKES [1] Paul Zheng<sup>(1)3</sup>, Emilie Chouzenoux<sup>1</sup>, Laurent Duval<sup>2</sup>

<sup>1</sup> Univ. Paris-Saclay, CentraleSupélec, CVN, Inria, Gif-sur-Yvette; <sup>2</sup> IFP Energies nouvelles, Rueil-Malmaison; <sup>3</sup> RWTH Aachen University, Germany

# **Background & Inspiration**

- BEADS (Baseline Estimation And Denoising using Sparsity)
- SOOT  $\ell_1/\ell_2$ , SPOQ  $\ell_p/\ell_q$  (Smooth One-Over-Two/p-Over-q norm/quasi-norm ratios) [3, 4]
- $\rightarrow$  **PENDANTSS** (PEnalized Norm-ratios Disentangling Additive Noise, Trend and Sparse Spikes) [1]



# **Proposed Optimization Method**

Block Coordinate Variable Metric Forward-Backward (BC-VMFB) [5] using trust-region (TR):

- Data fidelity  $\rho(\boldsymbol{s}, \boldsymbol{\pi}) \triangleq \frac{1}{2} || \boldsymbol{H}(\boldsymbol{y} \boldsymbol{\pi} * \boldsymbol{s}) ||^2$  Lipschitz-smooth w.r.t.  $\boldsymbol{s}$  (resp.  $\boldsymbol{\pi}$ ), with constants  $\Lambda_1(\boldsymbol{\pi})$  (resp.  $\Lambda_2(\boldsymbol{s})$ ). Denote  $f(\boldsymbol{s}, \boldsymbol{\pi}) \triangleq \rho(\boldsymbol{s}, \boldsymbol{\pi}) + \lambda \Psi(\boldsymbol{s})$  the differentiable part.
- **Diagonal MM metric** for f w.r.t.  $\boldsymbol{s}$  (for all  $\boldsymbol{\pi}$ ), denoting  $\chi_{q,\rho} = (q-1)/(\eta^q + \rho^q)^{2/q}$ ,  $\boldsymbol{A}_{1,\rho}(\boldsymbol{s},\boldsymbol{\pi}) = (\Lambda_1(\boldsymbol{\pi}) + \lambda \chi_{q,\rho}) \mathbf{Id}_N + \frac{\lambda}{\ell_{n,\alpha}^p(\boldsymbol{s}) + \beta^p} \mathrm{Diag}((s_n^2 + \alpha^2)^{p/2 - 1})_{1 \le n \le N};$
- Local majoration valid only for  $\boldsymbol{s} \in \overline{\mathcal{B}}_{q,\rho} = \{ \boldsymbol{s} = (s_n)_{1 \le n \le N} \in \mathbb{R}^N | \sum_{n=1}^N |s_n|^q \ge \rho^q \};$  $\rightarrow$  TR radius backtracking.

• BC-VMFB updates:

 $\forall k \in \mathbb{N}, \forall i \in \{1, \dots, \mathcal{I}\}, \begin{cases} \boldsymbol{s}_{k,i} = \operatorname{Proj}_{C_1} \left( \boldsymbol{s}_k - \gamma_{s,k} \boldsymbol{A}_{1,\rho_{k,i}} (\boldsymbol{s}_k, \boldsymbol{\pi}_k)^{-1} \nabla_1 f(\boldsymbol{s}_k, \boldsymbol{\pi}_k) \right), \\ \boldsymbol{\pi}_{k+1} = \operatorname{Proj}_{C_2} \left( \boldsymbol{\pi}_k - \gamma_{\pi,k} \Lambda_2 (\boldsymbol{s}_{k+1})^{-1} \nabla_2 f(\boldsymbol{s}_{k+1}, \boldsymbol{\pi}_k) \right). \end{cases}$ 

# 

https://github.com/paulzhengfr/PENDANTSS

"Sparsity" penalties:  $\ell_0$ ,  $\ell_1$ , SOOT, SPOQ quasi-norm ratios

### **Problem, Hypotheses & Notations**

**Denoising, detrending, deconvolution:** traditionally decoupled, ill-posed problem:

 $oldsymbol{y} = \overline{oldsymbol{s}} * \overline{oldsymbol{\pi}} + \overline{oldsymbol{t}} + oldsymbol{n}$  .

- $\boldsymbol{y} \in \mathbb{R}^N$ : observation;
- $\overline{s} \in \mathbb{R}^N$ : sparse spikes (impulses, events, "diracs", spectral lines);
- $\overline{\pi} \in \mathbb{R}^{L}$ : peak-shaped, short-support *kernel*;
- $\overline{\boldsymbol{x}} = \overline{\boldsymbol{s}} * \overline{\boldsymbol{\pi}} \in \mathbb{R}^N$ : signal;
- $\overline{t} \in \mathbb{R}^N$ : trend (offset, reference, baseline, background, continuum, drift, wander); •  $\boldsymbol{n} \in \mathbb{R}^N$ : noise (stochastic residuals).

**Trend estimation** using a low-pass filter  $L = Id_N - H$ :

$$\widehat{m{t}} = m{L}(m{y} - \widehat{m{\pi}} * \widehat{m{s}}).$$

- Constraint:  $(\widehat{\boldsymbol{s}}, \widehat{\boldsymbol{\pi}}) \in (C_1 \times C_2)$  some closed, non-empty and convex sets;
- Sparsity prior on signal through penalty:  $\Psi(\mathbf{s}) = \log\left(\frac{(\ell_{p,\alpha}^{p}(\mathbf{s}) + \beta^{p})^{1/p}}{\ell_{q,\eta}(\mathbf{s})}\right)$
- with  $\ell_{p,\alpha}^{p}(\boldsymbol{s}) = \left(\sum_{n=1}^{N} \left( (s_{n}^{2} + \alpha^{2})^{p/2} \alpha^{p} \right) \right)^{1/p}$ , and  $\ell_{q,\eta}(\boldsymbol{s}) = \left( \eta^{q} + \sum_{n=1}^{N} |s_{n}|^{q} \right)^{1/q}$ .

**Optimization Problem**: minimize  $\sum_{\boldsymbol{s} \in \mathbb{R}^N, \, \boldsymbol{\pi} \in \mathbb{R}^L} \frac{1}{2} || \boldsymbol{H}(\boldsymbol{y} - \boldsymbol{\pi} * \boldsymbol{s}) ||^2 + \iota_{C_1}(\boldsymbol{s}) + \iota_{C_2}(\boldsymbol{\pi}) + \lambda \Psi(\boldsymbol{s}).$ 

([1, Eq. 5])

([1, Eq. 3])

- Theorem:  $(\mathbf{s}_k, \mathbf{\pi}_k)_{k \in \mathbb{N}}$  converges to  $(\widehat{\mathbf{s}}, \widehat{\mathbf{\pi}})$  critical point of [1. Eq.5].

# Algorithm

#### Algorithm 1: TR-BC-VMFB to solve [1, Eq. 5] Settings: $K_{\max} > 0, \varepsilon > 0, \mathcal{I} > 0, \theta \in ]0, 1[, (\gamma_{s,k})_{k \in \mathbb{N}} \in [\gamma, 2 - \overline{\gamma}] \text{ and } (\gamma_{\pi,k})_{k \in \mathbb{N}} \in [\gamma, 2 - \overline{\gamma}] \text{ for some}$ $(\gamma, \overline{\gamma}) \in ]0, +\infty[^2, (p,q) \in ]0, 2[\times[2, +\infty[ \text{ satisfying } [1, \text{Eq.9}], \text{ convex sets } (C_1, C_2) \subset \mathbb{R}^N \times \mathbb{R}^L.$ Initialize: $s_0 \in C_1, \pi_0 \in C_2$ for k = 0, 1, ... do Update of the signal for $i = 1, \ldots, \mathcal{I}$ do Set TR radius $\rho_{k,i}$ using backtracking [1, Eq.16] with parameter $\theta$ ; Construct diagonal MM metric $A_{1,\rho_{k,i}}(s_k, \pi_k)$ using [1, Eq.15]; BC-VMFB update: Find $\mathbf{s}_{k,i} \in C_1$ such that [1, Eq.17] holds. $\text{ if } \boldsymbol{s}_{k,i} \in \overline{\mathcal{B}}_{q,\rho_{k,i}} \text{ then } \\$ Stop loop end end $\boldsymbol{s}_{k+1} = \boldsymbol{s}_{k,i};$ Update of the kernel BC-VMFB update: Find $\pi_{k+1} \in C_2$ such that [1, Eq.19] holds. Stopping criterion if $||\boldsymbol{s}_k - \boldsymbol{s}_{k+1}|| \leq \varepsilon$ or $k \geq K_{\max}$ then Stop loop end end $(\widehat{\boldsymbol{s}}, \widehat{\boldsymbol{\pi}}) = (\boldsymbol{s}_{k+1}, \boldsymbol{\pi}_{k+1})$ and $\widehat{\boldsymbol{t}}$ given by [1, Eq.3]; Result: $\hat{s}, \hat{\pi}, \hat{t}$

### **Dataset** A



120 140 60 80 100 160 20 40 180 Unknown sparse signal  $\overline{s}$ . Signal A has 10 spikes (5.0% of sparsity).

Dataset A (result)



### Dataset B









### **Result:** Comparative Table

|                                        | Dataset A                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dataset B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| bise level $\sigma$ (% of $x_{\max}$ ) | 0.5%                                                                                                                                                                                                                                                                                                           | 1.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| backcor[6]+SOOT                        | $29.2 \pm 0.7$                                                                                                                                                                                                                                                                                                 | $28.5 \pm 1.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $14.9 \pm 4.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $11.5 \pm 4.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| backcor[6]+SPOQ                        | $29.2 \pm 0.7$                                                                                                                                                                                                                                                                                                 | $29.3 \pm 1.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $12.9 \pm 3.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $11.3 \pm 4.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PENDANTSS $(1, 2)$                     | $32.9 \pm 1.5$                                                                                                                                                                                                                                                                                                 | $30.9 \pm 2.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $22.3 \pm 8.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $17.5 \pm 8.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PENDANTSS (0.75, 2)                    | $33.2 \pm 2.3$                                                                                                                                                                                                                                                                                                 | $31.0\pm4.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $15.9 \pm 4.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $12.9 \pm 4.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| backcor[6]+SOOT                        | $29.2 \pm 0.7$                                                                                                                                                                                                                                                                                                 | 29.3±1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $16.6 \pm 3.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $13.4 \pm 4.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| backcor[6]+SPOQ                        | $29.2 \pm 0.7$                                                                                                                                                                                                                                                                                                 | 29.3±1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $15.1 \pm 3.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $13.7 \pm 3.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PENDANTSS $(1, 2)$                     | 34.1±1.4                                                                                                                                                                                                                                                                                                       | $32.2 \pm 2.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.9±8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $19.2 \pm 7.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PENDANTSS $(0.75, 2)$                  | $35.4 \pm 1.7$                                                                                                                                                                                                                                                                                                 | $32.6 \pm 3.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $17.7 \pm 4.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $14.5 \pm 4.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| backcor[6]+SOOT                        | $20.5 \pm 0.2$                                                                                                                                                                                                                                                                                                 | 20.3±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $15.5 \pm 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $14.8 \pm 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| backcor[6]+SPOQ                        | $20.5 \pm 0.2$                                                                                                                                                                                                                                                                                                 | 20.3±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $15.5 \pm 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $14.8 \pm 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PENDANTSS $(1, 2)$                     | $26.9 \pm 0.5$                                                                                                                                                                                                                                                                                                 | $26.0 \pm 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.6±1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PENDANTSS (0.75, 2)                    | $26.9 \pm 0.6$                                                                                                                                                                                                                                                                                                 | $26.0 \pm 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $24.6 \pm 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $19.6 \pm 3.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| backcor[6]+SOOT                        | 36.3±1.3                                                                                                                                                                                                                                                                                                       | 33.9±1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30.3±1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $28.5 \pm 1.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| backcor[6]+SPOQ                        | $36.3 \pm 1.3$                                                                                                                                                                                                                                                                                                 | $34.0 \pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33.1±1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $31.2 \pm 2.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PENDANTSS $(1, 2)$                     | 41.3±2.0                                                                                                                                                                                                                                                                                                       | 34.4±2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38.3±1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $33.6 \pm 2.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PENDANTSS $(0.75, 2)$                  | 41.3±2.0                                                                                                                                                                                                                                                                                                       | $34.2 \pm 2.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $35.7 \pm 1.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $25.4 \pm 5.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | bise level $\sigma$ (% of $x_{max}$ )<br>backcor[6]+SOOT<br>backcor[6]+SPOQ<br>PENDANTSS (1, 2)<br>PENDANTSS (0.75, 2)<br>backcor[6]+SOOT<br>backcor[6]+SPOQ<br>PENDANTSS (0.75, 2)<br>backcor[6]+SOOT<br>backcor[6]+SPOQ<br>PENDANTSS (1, 2)<br>PENDANTSS (0.75, 2)<br>backcor[6]+SPOQ<br>PENDANTSS (0.75, 2) | Datasebise level $\sigma$ (% of $x_{max}$ )0.5 %backcor[6]+SOOT29.2±0.7backcor[6]+SPOQ29.2±0.7PENDANTSS (1, 2)32.9±1.5PENDANTSS (0.75, 2)33.2±2.3backcor[6]+SOOT29.2±0.7backcor[6]+SPOQ29.2±0.7PENDANTSS (1, 2)34.1±1.4PENDANTSS (0.75, 2)35.4±1.7backcor[6]+SPOQ20.5±0.2backcor[6]+SPOQ20.5±0.2backcor[6]+SPOQ20.5±0.2PENDANTSS (1, 2)26.9±0.5PENDANTSS (0.75, 2)26.9±0.6backcor[6]+SPOQ36.3±1.3backcor[6]+SPOQ36.3±1.3PENDANTSS (1, 2)41.3±2.0PENDANTSS (0.75, 2)41.3±2.0 | DataDise level $\sigma$ (% of $x_{max}$ )0.5%1.0%Dise level $\sigma$ (% of $x_{max}$ )29.2±0.728.5±1.9Dackcor[6]+SPOQ29.2±0.729.3±1.3PENDANTSS (1, 2)32.9±1.530.9±2.2PENDANTSS (0.75, 2)33.2±2.331.0±4.2Dackcor[6]+SOOT29.2±0.729.3±1.3Dackcor[6]+SPOQ29.2±0.729.3±1.3Dackcor[6]+SPOQ29.2±0.729.3±1.3PENDANTSS (1, 2)34.1±1.432.2±2.1PENDANTSS (0.75, 2)35.4±1.732.6±3.8Dackcor[6]+SPOQ20.5±0.220.3±0.4Dackcor[6]+SPOQ20.5±0.220.3±0.4PENDANTSS (1, 2)26.9±0.526.0±1.0Dackcor[6]+SPOQ36.3±1.333.9±1.7Dackcor[6]+SPOQ36.3±1.334.0±1.7PENDANTSS (1, 2)41.3±2.034.4±2.4PENDANTSS (0.75, 2)41.3±2.034.2±2.5 | Data:Dise level $\sigma$ (% of $x_{max}$ )0.5 %1.0 %0.5 %backcor[6]+SOOT29.2±0.728.5±1.914.9±4.0backcor[6]+SPOQ29.2±0.729.3±1.312.9±3.5PENDANTSS (1, 2) <b>32.9±1.530.9±2.2</b> 22.3±8.2PENDANTSS (0.75, 2) <b>33.2±2.331.0±4.215.9±4.5</b> backcor[6]+SOOT29.2±0.729.3±1.316.6±3.5backcor[6]+SPOQ29.2±0.729.3±1.316.6±3.5backcor[6]+SPOQ29.2±0.729.3±1.315.1±3.0PENDANTSS (1, 2) <b>34.1±1.432.2±2.1</b> 24.9±8.0PENDANTSS (0.75, 2) <b>35.4±1.732.6±3.817.7±4.0</b> backcor[6]+SOOT20.5±0.220.3±0.415.5±0.5backcor[6]+SOOT20.5±0.220.3±0.415.5±0.5PENDANTSS (1, 2)26.9±0.626.0±1.024.6±0.6backcor[6]+SOOT36.3±1.333.9±1.730.3±1.3backcor[6]+SOOT36.3±1.334.0±1.733.1±1.9PENDANTSS (1, 2)41.3±2.034.4±2.438.3±1.9PENDANTSS (0.75, 2)41.3±2.034.2±2.535.7±1.5 |

Numerical results on datasets A and B. SNR quantities in dB, averaged over 30 random realizations. Best, second best performing method.

### Conclusions

• Ill-posed joint blind deconvolution problem with additive trend,

- New block alternating algorithm: TR acceleration, convergence,
- Appropriate parameters to investigate (sparsity, separability),





• PENDANTSS Matlab code available.

#### References

- [1] P. Zheng, E. Chouzenoux, and L. Duval. PENDANTSS: PEnalized Norm-ratios Disentangling Additive Noise, Trend and Sparse Spikes. IEEE Signal Process. Lett., 30, 215–219, 2023.
- [2] X. Ning, I. W. Selesnick, and L. Duval. Chromatogram baseline estimation and denoising using sparsity (BEADS). Chemometr. Intell. Lab. Syst., 139:156–167, Dec. 2014.
- [3] A. Repetti, M. Q. Pham, L. Duval, E. Chouzenoux, and J.-C. Pesquet. Euclid in a taxicab: Sparse blind deconvolution with smoothed  $\ell_1/\ell_2$  regularization. *IEEE Signal Process. Lett.*, 22(5):539–543, May 2015.
- [4] A. Cherni, E. Chouzenoux, L. Duval, and J.-C. Pesquet. SPOQ  $\ell_p$ -over- $\ell_q$  regularization for sparse signal recovery applied to mass spectrometry. IEEE Trans. Signal Process., 68, 6070-6084, 2020.
- [5] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, A block coordinate variable metric forwardbackward algorithm. J. Glob. Optim., 66, 457-485, 2016.
- [6] V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert. Background removal from spectra by designing and minimising a non-quadratic cost function, Chemometr. Intell. Lab. Syst., vol. 76, no. 2, pp. 121-133, 2005





Github code

PENDANTSS Tunes (YouTube)

**₽T<sub>E</sub>X** TikZ**poster** 

Support: European Research Council Starting Grant MAJORIS ERC-2019-STG-850925.