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Sergi Ventosa, Hérald Rabeson, and Laurent Duval

IFP Energies nouvelles
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ABSTRACT

Directional filters are commonly used tools in modern seis-
mic data processing to address coherent signals, depending
on their apparent slowness or slope. This operation enhances
the characterization of the great variety of signals present in
a seismic dataset that enables a better characterization of the
subsurface structure. This paper compares two complemen-
tary local adaptive multiscale directional filters: a directional
filter bank based on dual-tree M-band wavelets and a novel
local slant stack transform (LSST) based filter in the time-
scale domain. Their differences reside in redundancy levels
and slope (directional) resolution. A structural similarity in-
dex measure has been employed to objectively compare both
approaches on a real seismic dataset example.

1. INTRODUCTION AND MOTIVATIONS

Understanding in geophysics is achieved thanks to seismic
wave fields, recorded by arrays of sensors, as responses to
artificial energy sources producing impulsive events. Each
signal recorded by a sensor is a seismogram or seismic trace,
sampled in time-domain. Side by side alignment of vertical
1D traces along spatial sensor location produces 2D time-
offset images (seismic sections). These sections could be
described as band-pass images in the vertical time direction
(between 5 and 80 Hz typically), with high lateral (along off-
sets) semblance.

The complexity of seismic data has contributed to the de-
velopment of several efficient signal processing tools such
as wavelet transforms [10] or spike deconvolution. While
1D processing of seismic traces is relatively common in
geophysics, their assemblage into seismic sections, as rep-
resented in Fig. 1, opens access to more involved two-
dimensional processing tools. Yet, differences between tra-
ditional images and seismic sections foster the quest for spe-
cific adaptations or genuine developments. We refer to [5],
freely available, for a combination of signal analysis and
seismic processing topics.

The two features most commonly used to detect, sepa-
rate and characterize signals seismic sections convey, are: (1)
similarity along signal trajectory, and (2) velocity/slowness
vector of the seismic waves at the receiver. When the seis-
mic trace density is high in the offset axis, the high similar-
ity enables the design of a great variety of filters depending
on the signal slope, to increase the signal-to-noise and the
signal-to-interference ratios.

The modern signal processing tools used in this field
root in the classical plane-wave decomposition techniques.
We can classify these classical techniques in broad cat-
egories: (1) pie-slice f-k (frequency-wavenumber) filters
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Figure 1: Original noisy data in a seismic section.

[24] based on the 2D Fourier transform; (2) τ-p (intercept-
time, slope/slowness) transform, also called Radon or slant-
stack transform [20, 24]; (3) p-f (slowness-frequency) filters
[11, 6]; and (4) filters based on eigenvalue decompositions
[22]. Note that, except the last one, all these techniques are
closely related; the f-k and τ-p filters by the projection slice
theorem [8], and the p-f and τ-p transforms by the Fourier
transform.

These techniques are frequently adapted to be used in a
local fashion to follow the slowness, amplitude and wave-
form variations that seismic waves usually exhibit at the cost
of losing slowness resolution. The main features that distin-
guish the different approaches available are: the redundancy
factor and the slowness/directional resolution. Multiscale ge-
ometric transforms (see [14] for a comprehensive overview)
used for image processing are usually designed with reduced
redundancy but mid-low slowness resolution; while continu-
ous approaches, such as local slant-stack transform (LSST)
[12, 2] or combinations between Radon and wavelet trans-
forms [16, 18, 15], yield mid-high slowness resolution and
high redundancy. Common applications on seismic signals
processing are noise filtering [13] and migration operations
[7].

The application under consideration focuses on the co-
herent noise (interferent signals) removal. This noise is
caused by peculiar wave propagation and arises as structured
signals in seismic sections, hampering subsequent geophys-
ical data processing and interpretation with high amplitude
directional band-pass stripes. This work investigates its re-
moval with two breeds of selective multiscale directional de-
compositions: (1) a time-scale LSST, highly redundant but
with a high slowness resolution and (2) a directional mul-



tiscale wavelet transform based on dual-tree M-band filter-
banks with a two-fold redundancy but with a low slowness
resolution. This comparison further allows to enlighten some
similarities between traditional and geophysical data pro-
cessing, that deserve further investigation, for the benefit of
both.

The paper is organized as follows: Section 2 describes
the time-scale LSST filters. Section 3 briefly recalls the prin-
ciples behind the M-band dual-tree wavelets. Comparisons
between the two methods are drawn in Section 4 on a real
seismic dataset, followed by conclusive comments.

2. LOCAL ADAPTIVE SLANT STACK FILTERS IN
THE TIME-SCALE DOMAIN

Broadly, an improvement of the accuracy of seismic signal
waveform estimators in the LSST domain implies an incre-
ment of the number of samples used along the time or the
offset axis. However, the instantaneous slowness variations
of the seismic signals and, to a lesser extent, their amplitude
variations, extremely limit the number of samples allowed
along the offset axis. Moreover, we can not perform any
substantial smoothing in the time axis; even though the in-
stantaneous slowness of coherent signals are slowly varying
in time, the seismic waveform is measured from its instanta-
neous amplitude, which varies fast.

The direct use of the instantaneous amplitude in the
waveform estimation entails the application of the same filter
for all the frequency/scale components of the signal. How-
ever, the rich spectral content of the seismic signals makes
more desirable to be able to adapt the filter at each fre-
quency/scale.

In the proposed approach, we decompose each seismic
trace in a time-scale-slowness domain to increase the signal-
to-noise ratio and the seismic event tracking capability w.r.t.
an adaptive LSST approach, while keeping the time resolu-
tion. The high degree of freedom that the time-scale domain
provides enables the design of a large set of filters much more
selective in slowness that the equivalent LSST ones. This
freedom allows us to set the optimum slowness resolution at
each frequency, or in opposition, to keep the resolution con-
stant to build filters that preserve the waveform of the seismic
signals processed. Additionally, it is also possible to config-
ure these filters to mimic a large variety of slowness filters in
the f-k, p-f and τ-p domain, reducing problems of aliasing in
the first ones and of inversion in the last ones.

2.1 Analysis

The local time-scale slant-stack transform is a combination
of the LSST and a continuous wavelet transform. The LSST
of a seismic section u with a nonuniform separation between
traces can be written as a weighted sum of L neighboring
traces along a set of signal trajectories of slope/slowness ps,
being s the slope/slowness index:

vs,m[n] =
(L−1)/2

∑
l=−(L−1)/2

gm[l]um+l(nT +(dm+l −dm) ps)

where each element vs,m[n] of the LSST decomposition is an
estimation of the contribution of the signal s to the sample
um(nT ), being n and m the sample and trace indices, re-
spectively. The time-space trajectory of the wavefront with a

slowness ps is t = nT +(dm+i − dm)ps, where T is the sam-
pling period and dm+i − dm the distance between the traces
um and um+i. The space window gm[l] is a smooth unit area
function that may depend on the offset of um. And L may
change along any dimension.

The equivalent time-scale LSST operation can be written
as the above LSST but performed in a time-scale domain:

Wvs,m[n, j] =
(L−1)/2

∑
l=−(L−1)/2

gλ [l]Wum+l(nT +(dm+l −dm) ps,2
j)

where Wum(τ ,λ ) stands for the wavelet transform along time
in the seismic section u(t,x). Each element Wvs,m[n, j] is the

contribution at scale λ = 2 j of the signal s at the sample n of
the trace with offset x = dm.

For a proper performance of the above slowness decom-
position, the wavelet transform and its inverse have to fulfill
three essential features: nearly perfect reconstruction, to re-
duce estimation errors on the slowness components of the
signal; linear phase delay, to preserve the seismic waveform;
and close-to time-invariance, to reduce the interpolation er-
ror at required time-scale positions not provided by the dis-
cretized wavelet transform. Additionally, it is useful to have
freedom in the choice of the mother wavelet. For this reason,
we have chosen an oversampled complex wavelet transform
based on frames of wavelets with several voices per octave.

2.2 Filtering and synthesis

A seismic section decomposed in time, space, scale and
slowness that contains R coherent signals of qr slowness,
ur(t −qrx) with r ∈ [1,R], can be approximately modeled as:

Wvs,xc(τ ,λ )≃
R

∑
r=1

h(λ ,qr − ps)Wur(τ −qrxc,λ ) (1)

where h(λ ,qr − ps) denotes a transfer function that models
the cross-interference in the slowness axis and xc the offset
of a given trace.

This transfer function depends on the LSST space win-
dow g(x) and the mother wavelet ψ(t),

h(λ ,qr − ps) =
1

λ 2Cψ

∞∫

−∞

ψλ (τ)ψ
∗
1λ
(τ ,qr − ps)dτ (2)

where Cψ =
∫ ∞
−∞ |ψ̂(ω)|2/|ω|dω and ψ1λ ,s

(t) denotes the

family of functions used in the time-scale LSST,

ψ1λ
(τ ,qr − ps) =

∞∫

−∞

1

|qr − ps|
gλ

(
t

qr − ps

)
ψλ (t − τ)dt

Note that g(t) is smooth, has unit area and is positive around
zero. In this work, we synthesized the filtered section using
a conventional 1D inverse continuous wavelet transform, but
other options are possible, such as a unique family of func-
tions for analysis and synthesis, similarly to the approach of
curvelet frames [15].

The optimum scaling of g(x) is problem dependent, and
generally not linear with the scale. As a consequence,
ψ1λ ,s

(t) cannot be obtained by scaling and translating a



unique mother wavelet; except in the particular case where
the window length is proportional with the scale, in which
case the transfer function is scale independent,

h(qr − ps) =
1

Cψ

∞∫

0

ĝ((qr − ps)ω) |ψ̂(ω)|2 dω

ω
(3)

and (1) is exact. In (3), ψ̂(ω) and ĝ(ω) denotes the Fourier
transform of the mother wavelet and the space window, re-
spectively. A filtered seismic section in the time-scale LSST
domain can be written using the transfer function defined in
(2) as:

Wyxc(τ ,λ ) =
S

∑
s=1

R

∑
r=1

f (τ ,λ , ps)h(λ ,qr− ps)Wur(τ−qrxc,λ )

(4)
where Wyxc(τ ,λ ) denotes the filtered signal in the time-
space-scale domain and f (τ ,λ , ps) the weighting filter to de-
sign.

If we define kr(τ ,λ ) as the desired gain for the r slow-
ness, the filter to design has to satisfy R equations. From (4),

S

∑
s=1

f (τ ,λ , ps)h(λ ,qr − ps) = kr(τ ,λ ) r ∈ [1,R]

or in vector notation,

H(λ )f(τ ,λ ) = k(τ ,λ ) (5)

This system of equations is underdetermined, S ≫ R, and
it thus possesses an infinite number of solutions. When the
instantaneous slowness of each coherent signal is known, the
least-squares solution leads to the minimum noise level in
the slowness axis. Considering a white Gaussian noise, the

solution of (5) under the minimum L2 norm constraint:

min
f(τ ,λ )

f
T (τ ,λ )f(τ ,λ ) that H(λ )f(τ ,λ ) = k(τ ,λ )

is

f(τ ,λ ) =H(λ )
(
H

T (λ )H(λ )
)−1

k(τ ,λ )

To design this 4D filter it is necessary to set kr(τ ,λ ) appro-
priately. In order to design this filter automatically, we esti-
mated the local maxima of the modulus of the complex time-
scale LSST through instantaneous slowness measures of the
most coherent signals in the slowness range of interest.

3. M-BAND WAVELETS AND HILBERT PAIRS

Let M be an integer greater than or equal to 2. An M-
band multiresolution analysis of L

2(R) is defined by one

scaling function ψ0 ∈ L
2(R) and (M − 1) mother wavelets

ψm ∈ L
2(R), m ∈ {1, . . . ,M − 1} [19], solutions of the fol-

lowing scaling equations:

∀m∈{0, . . . ,M−1}, 1√
M

ψm

( t

M

)
=

∞

∑
k=−∞

hm[k]ψ0(t−k),

(6)
where the sequences (hm[k])k∈Z are square integrable. A
“dual” M-band multiresolution analysis is defined by a scal-
ing function ψH

0 and mother wavelets ψH
m , m∈{1, . . . ,M−1}
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Figure 2: A pair of analysis/synthesis M-band para-unitary
filter banks generating M-band dual-tree wavelets.

Figure 3: Bidimensional 3-band dual-tree wavelets: (Left)
negatively oriented scaling function and wavelets; (Right)
positively oriented counterparts.

related to the functions ψm by an Hilbert pair relationship.
More precisely, the dual mother wavelets will be obtained
by an Hilbert transform from the “primal” wavelets ψm,
m ∈ {1, . . . ,M−1}. In the Fourier domain, the Hilbert trans-
form reads:

∀m ∈ {1, . . . ,M−1}, ψ̂H
m (ω) =−ı sign(ω)ψ̂m(ω).

where the signum function sign is defined as:

sign(ω) =





1 if ω > 0

0 if ω = 0

−1 if ω < 0.

These dual wavelets also satisfy two-scale equations similar
to (6) with the square integrable sequences (gm[k])k∈Z. The
general representation in terms of filter banks, on one decom-
position level, is shown in Fig. 2. Two-dimensional exten-
sions are obtained by tensor product between primal and dual
wavelets and linear combinations [3], as represented in Fig.
3 with M = 3 bands.

They illustrate that different directions can be extracted
from the transform, since band- and high-pass wavelets se-
lect opposite directions for each tree. Since the present pa-
per focuses on applications, we refer to [17, 4] for further
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(d)

Figure 4: Filtered signal (a) using the time-scale LSST to remove the high slope interferent signals, and (b) with local mute of
dual-tree coefficients, together with their differences w.r.t. original data in (c) and (d).

details on dual-tree wavelet transforms. In contrast to tra-
ditional wavelet shrinkage where small coefficients are dis-
carded, high-valued coefficients are masked since they cor-
respond to aforementioned coherent noises [9].

4. RESULTS AND DISCUSSION

To compare the two approaches, they are applied to coherent
noise removal from dataset in Fig. 1. It represents 750×
300 seismic image acquired in a rugged tomography foothill
province. The occluding coherent noise under consideration
is located at the acute cone originating from the central apex.
Its highly energetic and directional characteristics, since it
does not bear significant information, prevents the estimation
of geological substructures with lower amplitude.

To better qualify the filters’ behavior and results, the
Structural Similarity Index (SSIM) [23], now commonly em-
ployed for image quality assessment, has been applied. The
SSIM was initially proposed to overcome the limitations of
standard metrics used in image comparison and evaluation
such as mean squared error or peak signal-to-noise ratio. Al-
though the nature of seismic data is rather specific and dif-
fers from natural images, computing similarity maps (Fig. 5)
between the original data and filtered estimations provides
meaningful insights. Local high SSIM measures between
original and filtered data correspond to close shape.

Most of the differences between the results obtained with
both filtering techniques, apparent on Figs. 4 and 5, are re-
lated to their different space-slowness trade-off. Both tech-

niques attenuate the main high-slope coherent-noise compo-
nents (mid part on all these figures) with a higher attenua-
tion in the case of the dual-tree based filter — high SSIM
value — thanks to its shorter filter response or equivalently
higher space resolution w.r.t. the other. However, due to its
lower slowness resolution the distortion on low-slope signals
are higher. This effect can be noticed on the higher SSIM
measures on the outer part of Fig. 5(b), while the measures
of Fig. 5(a) are lower since the time-scale LSST based fil-
ter gives a higher slowness resolution in accordance with
its longer filter response. High-resolution figures are made
available at [21].

5. CONCLUSIONS

Time-scale directional filters are a powerful tool that can
significantly improve seismic data processing, thanks to the
enhancement in the seismic wave detection, separation and
tracking capabilities. The flexibility of these tools enables
adaptive instantaneous slowness with a fair degree of con-
trol of the slowness resolution in time-scale, while keeping
a minimum level of distortion to the signals under analy-
sis. As interferences are processed at each trace in the time-
scale-slowness domain, it becomes possible to isolate them,
in contrast to the commonly used τ-p transform and f-k pie-
slice based filters because of the lack of space resolution of
the former and of time-space resolution of the latter. The
two techniques used in this context yield two complemen-
tary approaches, with a different balance in slowness reso-
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Figure 5: Similarity maps between original data and estimated interferent signals using (a) the time-scale LSST, and (b) the
dual-tree wavelets.

lution and redundancy. Both are able to attenuate the main
part of the chevron-like coherent noise occluding meaning-
ful geologic information. The time-scale LSST focuses on
a reduced distortion level of the signal of interest, while the
dual-tree wavelet transform aims at increased noise rejection.
Due to the similarity of the time-scale LSST with other direc-
tional transforms used in image processing [1, 15], the quest
for a vaster family of adaptive transforms linking proposed
methods deserves further investigations.
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