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ABSTRACT

It is reportedthat the useof multiple numberof subbandtrans-
forms for thresholding-baseddenoisinggainsperformancein the
senseof the meansquareerror. In traditionalthresholding-based
methods,a noisy imageis decomposedby linear transformation
suchaswavelets,FFT, andsoon,andthetransformedcoe

�
cients

arehard-� soft-thresholded.In particular, it iswell-known thatwavelets
work well for denoising. Fromtheviewpoint thatwaveletsarein a
classof subband transforms,we proposea strategy in which mul-
tiple numberof subbandtransformsareswitchedregionby region,
i.e. block by block. For reconstruction,the projection-basedit-
erative methodis used.Experimentalresultsarepretty goodand
promising.

1. INTR ODUCTION

Restorationof an imageor signalcontaminatedby noiseis a fun-
damentalproblemin thefield of imageandsignalprocessing. We
deal in this paperwith the additive noise model. This is very
simplebut still di

�
cult, andcanbe appliedto a lot of real prac-

tical problems. One of well-known solutionsfor this problem
is a denoisingmethodwith linear transformationand threshold-
ing [1]. In particular, wavelet transformsarevery successful for
pre-processing beforethresholding[1]. Moreover, therehavebeen
severalreportsregardinghow tochooseathresholdvalue.Conven-
tional thresholding(hard-thresholding) aswell asshrinkage(soft-
thresholding) arewell analyzed.

It hasbeenalsoreported[2] thatuniform subbandtransforms
or filter bankswork quite well in denoising. They have beende-
velopedoriginally for imagecoding[3], andprovide performance
similaror superiorto waveletsin imagecodingapplications[4,5].
This is dueto the fact that thosetransformsprovide goodenergy
compactionproperty, which can be exploited by denoising. It
hasbeenmoreover suggestedin imagecoding that the so-called
time-varyingsubband transformresultsin betterperformancethan
conventional subband transforms[6]. In this transform,multiple
numberof subband transformsareswitchedregion by region, i.e.,
blockby blockdepending onlocal images.In thispaper, wewould
like to applythissuccessful strategy to imagedenoising.Ourmain
motivationsis to usethe ideathat thereshouldexist moreappro-
priatebasisfunctionsdepending on local statistics.In the restof
this paper, we describethe denoising framework which we deal
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with andthe di
�

culty of reconstructionin the caseof the useof
multiple subbandtransforms.We thenshow theprojection-based
reconstruction methodusedin the proposedprocedureand illus-
tratehow to choosea transformat eachregion (block). Finally,
we show that the useof multiple number of transformsgainsde-
noisingperformancein PSNRover conventional singletransform
methods throughout a simulationstudy.

2. MULTIPL E TRANSFORMS AND THRESHOLDING
FOR DENOISING

2.1. Thr esholding-BasedDenoisingFramework

Denoisingschemebasedon the combinationof transformation
and thresholdingis generally describedas follows. Let f be an
original image. This image is transformedby a properly cho-
senlinear transformation(e.g.,wavelets,FFT, and lappedtrans-
forms)denotedby T . Thetransformedcoe

�
cientsarehard-� soft-

thresholded, and then the corresponding inversetransformation
T � 1 is appliedto the thresholdedcoe

�
cients.This non-linear op-

erationcanbewritten as

f̂ � T � 1Thr[T f ] � (1)

whereThr[ � ] denotesthe thresholding and f̂ is the reconstructed
image.Varioussophisticatedthresholdingoperatorshave beenin-
vestigated(see[1], for instance).

Usually, the transformationoperatorT (FFT, wavelets,sub-
bandtransform,andsoon)canbeimplementedby ablock-diagonal
matrix, or a periodicallytime-invariantsystem.This implies that
the identicalfilters areappliedto all regions. It is, however, not
guaranteedthat for all regions in an image, the samefilters are
suitablefor denoising. Therefore,we introducea notion that we
switch the transformationregion by region. Roughly speaking,
whenwe switchtwo transforms,this ideacanbeformulatedas

f̂ � T � 1Thr[P̃1T1 f � P̃2T2 f ] � (2)

where P̃1 and P̃2 arediagonal matriceswith entries0 or 1 such
that P̃1 � P̃2 � I, andT � 1 meansherethe inverseof the operator
P̃1T1 � P̃2T2. An overview of thisconcept in denoising is depicted
in Fig. 1. Even if we know T � 1

1 andT � 1
2 , the derivation of T � 1 is

notatrivial task.In thefollowing subsections,wewill haveamore
precisediscussionof theuseof multiple subbandtransforms.

2.2. Transform Settings

We formulatein this subsectiontheproposedanalysistransforma-
tion systemwhichusemultipleuniform subbandtransforms(filter
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Fig. 1. Proposeddenoisingstructure.

banks).As wementioned earlier, thereasonwhy we introducethe
useof multiple subband transformsis thata naturalimageis gen-
erallya non-stationaryprocess.Thiscanbeintuitively understood
from the fact that a naturalimagecanbe roughly classifiedinto
smooth, texture, and edgeregions, whosecorrelationfunctions
mightbedi � erentfrom eachother. Therefore,thereis adoubtthat
a singletransformis appliedto a whole image.Fromthis point of
view, the useof varioussubband transformsfor decomposingan
imagewill improve performancein denoising.

Supposethat thereareL subband transformsimplementedas
an N-channel maximally decimateduniform filter bank, which
consistsof asetof N filters followedby downsamplingby a factor
of N. We alsoassumeherethat they have the samelength KN,
whereK is anpositive integer. Definetheanalysistransformma-
trix of lth subband transformasfor l � 0�	�	�	�
� L � 1,

E(l) � [E(l)
K � 1 �	�	�
�	� E

(l)
0 ] (3)

whereEk, k � 0���	�	�	� K � 1, which leadsto a polyphasematrix of
theanalysispartdescribedby E(l)(z) � K � 1

k 
 0 E(l)
k z� k. Therows of

E(l) correspondto theimpulseresponsesof theanalysisfilters. Let�
f (t)� t��� beasetof tth blockedsignals(or vectorsat time instance

t) consistingof N consecutive samples,where � describesa set
of time indexes. The analysissubband transformE(l) generatesa
sequence of thetransformedvectors

�
g(t)� t��� as

g(t) � E(t) f̄ (t) (4)

where f̄ (t) � [ f (t � (K � 1))T �	�
���	� f (t)T ]T , andE(t) � E(l(t)), that
is, E(t) is equalto someelementin thesubband transformset ����
E(l) � L� 1

l 
 0 . If weuseasinglesubbandtransformin thesamemanner
asconventional methods,E(t) is identical,say, independentof time
instancet.

In mostof applications,it is desiredthattheoriginal sequence
f (t) is perfectlyreconstructedfrom thetransformedsequenceg(t).
As we statedin 2.1, if we usea singleperfectreconstructionsub-
bandtransform,the reconstruction is performedjust by applying
the corresponding synthesistransformto the thresholdedcoe

�
-

cients. However, in our case,i.e., whenwe switch several trans-
formsregion by region,evenif we applyeachsynthesistransform
to the corresponding coe

�
cients,perfectreconstructionis gener-

ally impossible. As proved by Tanakaet al [6], however, if all
subband transformsareunitary, thereconstruction canbedoneby
applyingthetheoryof projectionontoconvex sets(POCS), which
is usuallyusedin theareaof imagerestoration[7].

2.3. ReconstructionWith POCS

Onthebasisof thetheorydescribedin [6], weshow in thissection
thatby introducingappropriateclosedconvex sets,wecanexactly
reconstructtheoriginal imagefrom thetransformedvector.

We obtain the transformedvector by the transformationde-
scribedin (4). Recallthat eachE(t) corresponds oneof elements
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Fig. 2. POCSpart in Fig. 1: Illustrative iterationprocedure for
reconstruction.

in theanalysistransformset� , i.e., E(t) ��� . Now, wecanrewrite
(4) as

g(t) �
L� 1

l 
 0

�
l(t)E(l) f̄ (t) � (5)

where

�
l(t) � IM � if E(t) � E(l)

0M � otherwise� (6)

whereIM and0M denote theidentity andthenull matricesof both
sizeM. It is clearthat L� 1

l 
 0

�
l(t) � IM . Let

P̃l � diag[�	�	��� � l(t) �
�

l(t � 1)���	�	� ] � (7)

and

E(l) �

� � �
E(l)

K � 1 �
�	� E(l)
0

E(l)
K � 1 �	�
� E(l)

0
� � �

� (8)

Then, P̃l represents anorthogonal projectorwith diagonal entries
0 or 1, and E(l) describesa subbandtransformoperatorwhich is
not time-varying. Notice that L� 1

l 
 0 P̃l � I. We canfurther mod-
ify (4) as g � L� 1

l 
 0 g̃l, wheregl � P̃lE(l) f and f � [ �	���	� f (t �
1)T � f (t)T � f (t � 1)T ���	�	� ]T , g � [ �
���	� g(t � 1)T � g(t)T � g(t � 1)T ���	�	� ]T �
H (e.g. H ��� 2(Z)). If thesubbandtransformoperator E(l) is uni-
tary, i.e., E (l) � E(l) � I, where � � denotesthe adjoint, the operator
Pl is an orthogonal projector, sinceit canbe easilychecked that
P2

l � Pl andP�l � Pl.
DefinethentheoperatorPCl asfor x � H,

PCl x � E(l) � ((I � P̃l)x � gl) � (9)

which gives the projectoronto the convex set (linear manifold)
defiedasCl � E(l)gl � H �l , whereHl is thesubspacedefinedby Pl.
Finally, theoriginal signalis obtainedasthelimit of therecursion
givenas fi � 1 � PCL� 1 �	�	� PC1 PC0 fi.
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Fig. 3. Noisevariance� 2 v.s. peaksignal-to-noiseratio (PSNR)

2.4. Transform Selection

Wehaveto definethecriteriato choosethemostappropriatetrans-
form at theencoder. At eachtimeinstance(block) t, wecanobtain
L di � erenttransformedvectorsdenotedby g(l)(t), l � 0�	�
���	� L � 1,
as g(l)(t) � E(l) f̄ (t). Then,we chooseonevectorfrom the L vec-
tors. Indeed,how to choosethebestbasisin this methodis a very
di
�

cult problem. Theoreticalconsiderationwould be needed;in
this paper, however, the main purposeis to show that the useof
multiple subband transformsimprove performance in denoising.
Therefore,thefollowing simplecriterionisadopted.Let ĝ(l)(t) bea
coe

�
cientsvectorat block t afterhard-� soft-thresholding.Firstly,

we definethefollowing costfunction:

J[ g(l)(t)] �! ĝ(l)(t)  #"$ g(l)(t)  #� (10)

Wechoosethefilter bankwhichgivesthemaximumvalueof J[ g(l)].
If no noiseis added, this criteriaselectsthefilter bankthatmostly
concentratestheenergy afterthresholding.
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Fig. 4. Thresholdv.s.PSNRat thenoisevariance� 2 � 150

3. EXPERIMENT AL RESULTS

To illustratethe advantage of the useof multiple filter banks, we
show someexamplesof imagedenoising. Recallthat theadditive
noisemodelis supposed.

3.1. Choiceof Thr eshold

We useherejust the singlefixed thresholdsuggestedby Donoho
at al [1] givenby

% �&� 2 loge N � (11)

where� is thestandarddeviation of thenoiseandN is thenumber
of pixels of the image. By usingthis threshold,we apply “hard-
thresholding” to thetransformcoe

�
cients.

In denoising, how to choosethe thresholdis an importantis-
sueandseveralsophisticatedthresholdshavebeeninvestigated[1];
however, in this paper, in orderto clearlyemphasizeandshow the
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Fig. 5. Noisy anddenoisedimages‘Lena’ when� 2 � 150

e� ectivenessof the useof multiple transformsandPOCSrecon-
struction,we make a systemsimple,i.e.,we usea fixedthreshold
for a whole imageasdonein [8]. For practicalapplications,of
course,we shouldestimatethe varianceof noise. Furthermore,
moresophisticatedthresholdmight leadto betterperformance.

3.2. Results

In this test,we comparedenoising performanceof several trans-
formsin thefollowing: 1) 8-channel lappedorthogonal transform
(LOT) [9], 2) 8-channel GenLOT of filter length 48 [9], 3) 9� 7
biorthogonal wavelet [1], and4) the proposedmultiple-transform
methodin which the LOT andthe GenLOT areselectively used.
For reconstruction,thenumberof iterationis 20,whichyieldssuf-
ficient quality. In order to show the gain of performance at the
samethreshold,we depictPSNRsat variousnoisevarianceswith
respectto thewell-known picturesLenaandBarbaraof bothsize
512 ) 512 in Fig. 3. As we canseein this figure,theuseof mul-
tiple transformsimprove PSNRconsistently. In Fig. 4, next, we
show thee� ectof our proposedprocedurefor variousthresholds.
At smallerthresholds,theGenLOT providesthebestperformance;
however, after thepeak,theproposedmethodgivesthebestqual-
ity in PSNR.Finally, we provide subjective comparisonin Fig. 5.
We show herethe noisy imageof the noisevariance� 2 � 150,
thedenoisedimagesby 9� 7 biorthogonal waveletandtheproposed
multiple transforms.In theimagegeneratedby thewavelets,blur-
ring aroundstrongedgesarevery significant. It is observed that
theproposedmultiple-transformmethodsuppressesblurringmore
thanthe wavelet. Moreover, PSNRof our proposedmethodout-
performsthatof wavelets.

4. CONCLUSIONS

We have shown thattheuseof multiple numberof subbandtrans-
forms in denoisinggainsperformancein the senseof the mean
squareerror compared to the caseof single transform. We have
proposed a conceptthat several subband transformsareswitched

region by region,andillustrateda reconstruction procedurewhich
accomplishes perfect reconstructionon the basisof the POCS.
Now, we have someopenproblems.Wehaven’t mentionedin this
paperhow to find theoptimalthreshold.This would beaddressed
in future.
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