Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			1/25

Sparse deconvolution of seismic data with a regularized norm ratio

Audrey Repetti Université Paris-Est Marne-la-Vallée, France

ICIAM 2015 - Beijing - August 11

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			2/25

In collaboration with

M. Q. Pham

L. Duval

E. Chouzenoux J.-C. Pesquet

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
●000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			3/25

Motivation: Inverse problems

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
●000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			3/25

Motivation: Inverse problems

V

s

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			4/25

Variational formulation

- ★ *F* is a data fidelity term related to the observation model
- \star *R* is a regularization term related to a priori assumptions on the target solution
 - e.g. a priori on the smoothness of an image,
 - e.g. a priori on the sparsity of a signal,
 - e.g. support constraint,
 - e.g. amplitude/energy bounds,
 - etc.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			4/25

Variational formulation

- \star F is a data fidelity term related to the observation model
- \star *R* is a regularization term related to a priori assumptions on the target solution

In the context of large scale problems, how to find an optimization algorithm able to deliver a reliable numerical solution in a reasonable time, with low memory requirement?

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			5/25

Blind deconvolution

Blind deconvolution problem : $y = \overline{h} * \overline{s} + w$, with

* 5: unknown sparse latent signal

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			5/25

Blind deconvolution

Blind deconvolution problem : $y = \overline{h} * \overline{s} + w$, with

- * 5: unknown sparse latent signal
- \star \overline{h} : unknown impulse response
 - blur, linear sensor response, point spread function, seismic wavelet, spectral broadening

OBJECTIVE: Find estimate $(\hat{s}, \hat{h}) \in \mathbb{R}^{N_1} \times \mathbb{R}^{N_2}$ from y.

MINIMIZATION PROBLEM

Define estimate $(\widehat{s}, \widehat{h})$ as a solution to $\min_{(s,h) \in \mathbb{R}^{N_1+N_2}} F(s,h) + R_1(s) + R_2(h)$.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			6/25

- Smooth and convex
- Not efficient as a sparsity measure

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			6/25

- Nonsmooth and nonconvex
- Difficult to manage

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			6/25

- Convex relaxation of the $\ell_0\text{-penalization}$ function
- Nonsmooth and convex
- Do not lead to a good estimation of \overline{s} in the context of blind deconvolution problems

[Benichoux et al. - 2013]

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			6/25

- Used in:
 - Non-negative Matrix Factorization (NMF) [Hoyer 2004]
 - Sharpness constraint on wavelet coefficients in images
 - Non-destructive testing/evaluation (NDT/NDE)
 - ► Sparse recovery [Esser et al. 2015]
 - ▶ Potential avoidance of pitfalls [Benichoux et al. 2013]
 - Earlier mentions in geophysics [Gray 1978]

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			6/25

Comparison of different measures:

- Let $a = (a^{(n)})_{1 \le n \le N}$ such that $(\forall n \in \{1, \dots, N\}) a^{(n)} = 1/N$
- Let $b=(b^{(n)})_{1\leq n\leq N}$ such that $b^{(1)}=1$ and $(\forall n\in\{2,\ldots,N\})$ $b^{(n)}=0$
 - Same ℓ_1 norm: $\|a\|_1 = \|b\|_1 = 1$

•
$$||a||_0 = N \ge ||b||_0 = 1$$

• $\|a\|_1/\|a\|_2 = \sqrt{N} \ge \|b\|_1/\|b\|_2 = 1$

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			6/25

- Nonsmooth and nonconvex
- Efficient in the context of blind deconvolution problems [Benichoux et al. – 2013]
- Difficult to manage

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			6/25

 \star Use a smooth approximation of the ℓ_1/ℓ_2 penalization function.

•
$$(\forall s \in \mathbb{R}^N) \ \ell_{1,\alpha}(s) = \sum_{n=1}^{N_1} (\sqrt{(s^{(n)})^2 + \alpha^2} - \alpha), \text{ where } \alpha \in]0, +\infty[$$

 \rightsquigarrow also known as the hybrid $\ell_1-\ell_2$ or the hyperbolic norm

•
$$(\forall s \in \mathbb{R}^N) \ \ell_{2,\eta}(s) = \sqrt{\sum_{n=1}^{N_1} (s^{(n)})^2 + \eta^2}, ext{ where } \eta \in]0, +\infty[$$

Introduction 0000	Proposed minimization method	Seismic blind deconvolution problem	Conclusion 00
Sparse deconvolution of seismic data with a regularized norm ratio			6/25

 \star Use a smooth approximation of the ℓ_1/ℓ_2 penalization function.

•
$$(\forall s \in \mathbb{R}^N) \ \ell_{1,\alpha}(s) = \sum_{n=1}^{N_1} \left(\sqrt{(s^{(n)})^2 + \alpha^2} - \alpha \right)$$
, where $\alpha \in]0, +\infty$
• $(\forall s \in \mathbb{R}^N) \ \ell_{2,\eta}(s) = \sqrt{\sum_{n=1}^{N_1} (s^{(n)})^2 + \eta^2}$, where $\eta \in]0, +\infty[$

Proposed minimization method	Seismic blind deconvolution problem	Conclusion
000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio		
	Proposed minimization method 000000000 on of seismic data with a regularized norm r	Proposed minimization method 000000000 on of seismic data with a regularized norm ratio

 \star Use a smooth approximation of the ℓ_1/ℓ_2 penalization function.

- The logarithm function strengthens the sparsity measure of the ℓ_1/ℓ_2 function.
- Differentiable nonconvex function.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	•00000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			7/25

Minimization problem

OPTIMIZATION PROBLEM Find $\hat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}^N} \left\{ G(x) = F(x) + R(x) \right\}$

where

 R: ℝ^N →] − ∞, +∞] is proper, lsc, bounded from below by
 an affine function, and the restriction to its domain is
 continuous,

►
$$F : \mathbb{R}^N \to] - \infty, +\infty[$$
 is β -Lipschitz differentiable ,

G is coercive.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	00000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			8/25

Let
$$x_0 \in \text{dom } R$$
.
Let, for every $k \in \mathbb{N}$, $\gamma_k \in]0, +\infty[$.
For $k = 0, 1, ...$
 $\lfloor x_{k+1} \in \text{prox}_{\gamma_k R} (x_k - \gamma_k \nabla F(x_k))$

Let $R: \mathbb{R}^N \to]-\infty, +\infty]$ be proper, lsc, and bounded from below by an affine function.

The proximity operator of R at $x \in \mathbb{R}^N$ is defined by

$$\operatorname{prox}_{R}(x) = \operatorname{Argmin}_{y \in \mathbb{R}^{N}} R(y) + \frac{1}{2} \|y - x\|^{2}.$$

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	00000000	0000000	00
Sparse deconvolution	n of seismic data with a regularized norm	1 ratio	8/25

Let
$$x_0 \in \text{dom } R$$
.
Let, for every $k \in \mathbb{N}$, $\gamma_k \in]0, +\infty[$.
For $k = 0, 1, ...$
 $\lfloor x_{k+1} \in \text{prox}_{\gamma_k R} (x_k - \gamma_k \nabla F(x_k))$

Let $R \colon \mathbb{R}^N \to]-\infty, +\infty]$ be proper, lsc, and bounded from below by an affine function.

The proximity operator of R at $x \in \mathbb{R}^N$ is defined by

$$\operatorname{prox}_{R}(x) = \operatorname{Argmin}_{y \in \mathbb{R}^{N}} R(y) + \frac{1}{2} \|y - x\|^{2}.$$

* When R is convex, then $\operatorname{prox}_R(x)$ is reduced to a singleton.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	00000000	0000000	00
Sparse deconvoluti	on of seismic data with a regularized norm	ratio	8/25

Let
$$x_0 \in \text{dom } R$$
.
Let, for every $k \in \mathbb{N}$, $\gamma_k \in]0, +\infty[$.
For $k = 0, 1, ...$
 $\lfloor x_{k+1} \in \text{prox}_{\gamma_k R} (x_k - \gamma_k \nabla F(x_k))$

Let $R \colon \mathbb{R}^N \to]-\infty, +\infty]$ be proper, lsc, and bounded from below by an affine function.

The proximity operator of R at $x \in \mathbb{R}^N$ is defined by

$$\operatorname{prox}_{R}(x) = \operatorname{Argmin}_{y \in \mathbb{R}^{N}} R(y) + \frac{1}{2} \|y - x\|^{2}.$$

- * When R is convex, then $\operatorname{prox}_R(x)$ is reduced to a singleton.
- * When $R = \iota_{\mathcal{C}}$ is the indicator function of the non empty closed convex set $\mathcal{C} \subset \mathbb{R}^N$, then $\operatorname{prox}_{\iota_{\mathcal{C}}}(x) = \prod_{\mathcal{C}}(x) = \operatorname{argmin}_{y \in \mathcal{C}} ||y x||^2$.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	00000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			8/25

Let
$$x_0 \in \text{dom } R$$
.
Let, for every $k \in \mathbb{N}$, $\gamma_k \in]0, +\infty[$.
For $k = 0, 1, ...$
 $\lfloor x_{k+1} \in \text{prox}_{\gamma_k R} (x_k - \gamma_k \nabla F(x_k))$

Let $R: \mathbb{R}^N \to]-\infty, +\infty]$ be proper, lsc, and bounded from below by an affine function. Let $U \in \mathbb{R}^{N \times N}$ be a symmetric positive definite (SPD) matrix. The proximity operator of R at $x \in \mathbb{R}^N$ is defined by

$$\operatorname{prox}_{U,R}(x) = \operatorname{Argmin}_{y \in \mathbb{R}^N} R(y) + \frac{1}{2} \|y - x\|_U^2,$$

where $||x||_U^2 = \langle x | Ux \rangle$.

- * When R is convex, then $\operatorname{prox}_R(x)$ is reduced to a singleton.
- * When $R = \iota_{\mathcal{C}}$ is the indicator function of the non empty closed convex set $\mathcal{C} \subset \mathbb{R}^N$, then $\operatorname{prox}_{\iota_{\mathcal{C}}}(x) = \prod_{\mathcal{C}}(x) = \operatorname{argmin}_{y \in \mathcal{C}} ||y x||^2$.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	00000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			8/25

Let $x_0 \in \text{dom } R$. Let, for every $k \in \mathbb{N}$, $\gamma_k \in]0, +\infty[$. For k = 0, 1, ... $\lfloor x_{k+1} \in \text{prox}_{\gamma_k R} (x_k - \gamma_k \nabla F(x_k))$

EXISTING CONVERGENCE RESULTS:

* Convergence of $(x_k)_{k \in \mathbb{N}}$ to a minimizer of G is ensured when F and R are convex, and $0 < \inf_{k \in \mathbb{N}} \gamma_k \leq \sup_{k \in \mathbb{N}} \gamma_k < 2\beta^{-1}$. [Combettes & Wais - 2005]

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	00000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			8/25

Let
$$x_0 \in \text{dom } R$$
.
Let, for every $k \in \mathbb{N}$, $\gamma_k \in]0, +\infty[$.
For $k = 0, 1, ...$
 $\mid x_{k+1} \in \text{prox}_{\gamma_k R} (x_k - \gamma_k \nabla F(x_k))$

EXISTING CONVERGENCE RESULTS:

- * Convergence of $(x_k)_{k \in \mathbb{N}}$ to a minimizer of G is ensured when F and R are convex, and $0 < \inf_{k \in \mathbb{N}} \gamma_k \leq \sup_{k \in \mathbb{N}} \gamma_k < 2\beta^{-1}$. [Combettes & Wajs - 2005]
- ★ Convergence of (x_k)_{k∈ℕ} to a critical point of G is ensured when F and/or R are nonconvex, and
 0 < inf_{k∈ℕ} γ_k ≤ sup_{k∈ℕ} γ_k < β⁻¹.
 [Attouch, Bolte & Svaiter 2011]
 → Proof based on Kurdyka-Łojasiewicz inequality

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			9/25

Kurdyka-Łojasiewizc inequality

Function *G* satisfies the Kurdyka-Łojasiewicz inequality i.e., for every $\xi \in \mathbb{R}$, and, for every bounded subset *E* of \mathbb{R}^N , there exist three constants $\kappa > 0$, $\zeta > 0$ and $\theta \in [0, 1)$ such that

 $ig(orall t\in\partial G(x)ig) \qquad \|t\|\geq\kappa|G(x)-\xi|^ heta,$

for every $x \in E$ such that $|G(x) - \xi| \leq \zeta$.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			9/25

Kurdyka-Łojasiewizc inequality

Function G satisfies the Kurdyka-Łojasiewicz inequality i.e., for every $\xi \in \mathbb{R}$, and, for every bounded subset E of \mathbb{R}^N , there exist three constants $\kappa > 0$, $\zeta > 0$ and $\theta \in [0, 1)$ such that

 $ig(orall t\in\partial {\mathcal G}(x)ig) \qquad \|t\|\geq\kappa|{\mathcal G}(x)-\xi|^ heta,$

for every $x \in E$ such that $|G(x) - \xi| \leq \zeta$.

- Note that other forms of the KL inequality can be found in the literature [Bolte *et al.* - 2007][Bolte *et al.* - 2010].
- Technical assumption satisfied for a wide class of nonconvex functions :
 - real analytic functions
 - semi-algebraic functions

• ..

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolutio	n of seismic data with a regularized norm	ratio	9/25

Kurdyka-Łojasiewizc inequality

Function G satisfies the Kurdyka-Łojasiewicz inequality i.e., for every $\xi \in \mathbb{R}$, and, for every bounded subset E of \mathbb{R}^N , there exist three constants $\kappa > 0$, $\zeta > 0$ and $\theta \in [0, 1)$ such that

 $ig(orall t\in\partial G(x)ig) \qquad \|t\|\geq\kappa|G(x)-\xi|^ heta,$

for every $x \in E$ such that $|G(x) - \xi| \leq \zeta$.

- Note that other forms of the KL inequality can be found in the literature [Bolte *et al.* - 2007][Bolte *et al.* - 2010].
- Technical assumption satisfied for a wide class of nonconvex functions :
 - real analytic functions
 - semi-algebraic functions

• ...

→ So far, almost every practically useful function imagined.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolutio	n of seismic data with a regularized norm r	atio	10/25

Variable metric forward-backward algorithm

* Introduce preconditioning symmetric positive definite (SDP) matrices.

Let $x_0 \in \text{dom } R$. Let, for every $k \in \mathbb{N}$, $\gamma_k \in]0, +\infty[$ and $A_k(x_k) \in \mathbb{R}^{N \times N}$ an SPD matrix. For k = 0, 1, ... $\left[\begin{array}{c} x_{k+1} \in \operatorname{prox}_{\gamma_k^{-1} A_k(x_k), R} (x_k - \gamma_k A_k(x_k))^{-1} \nabla F(x_k)) \end{array}\right]$

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvoluti	on of seismic data with a regularized norm	ratio	10/25

Variable metric forward-backward algorithm

* Introduce preconditioning symmetric positive definite (SDP) matrices.

Let $x_0 \in \text{dom } R$. Let, for every $k \in \mathbb{N}$, $\gamma_k \in]0, +\infty[$ and $A_k(x_k) \in \mathbb{R}^{N \times N}$ an SPD matrix. For k = 0, 1, ... $\left[\begin{array}{c} x_{k+1} \in \operatorname{prox}_{\gamma_k^{-1} A_k(x_k), R} \left(x_k - \gamma_k A_k(x_k) \right)^{-1} \nabla F(x_k)\right) \right]$

★ Existing convergence result:

 Convergence of (x_k)_{k∈N} to a minimizer of G when F and R are convex [Combettes & Vũ - 2012]

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvoluti	on of seismic data with a regularized norm	ratio	10/25

Variable metric forward-backward algorithm

* Introduce preconditioning symmetric positive definite (SDP) matrices.

Let $x_0 \in \text{dom } R$. Let, for every $k \in \mathbb{N}$, $\gamma_k \in]0, +\infty[$ and $A_k(x_k) \in \mathbb{R}^{N \times N}$ an SPD matrix. For k = 0, 1, ... $\left[\begin{array}{c} x_{k+1} \in \operatorname{prox}_{\gamma_k^{-1} A_k(x_k), R} (x_k - \gamma_k A_k(x_k)^{-1} \nabla F(x_k)) \end{array}\right]$

★ Existing convergence result:

- Convergence of (x_k)_{k∈N} to a minimizer of G when F and R are convex [Combettes & Vũ - 2012]
- ★ OUR CONTRIBUTIONS:
 - \checkmark Convergence in the nonconvex case
 - \checkmark Choice of the preconditioning matrices

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			11/25

Majorize-Minimize strategy [Jacobson & Fessler – 2007]

For every $k \in \mathbb{N}$, there exists an SPD matrix $A_k(x_k) \in \mathbb{R}^{N \times N}$ such that $(\forall x \in \mathbb{R}^N) \quad Q(x, x_k) = F(x_k) + \langle x - x_k | \nabla F(x_k) \rangle + \frac{1}{2} ||x - x_k||^2_{A_k(x_k)}$ is a majorant function of F at x_k on dom R, i.e., $F(x_k) = Q(x_k, x_k)$ and $(\forall x \in \text{dom } P) = F(x_k) \leq Q(x_k, x_k)$

 $F(x_k) = Q(x_k, x_k)$ and $(\forall x \in \text{dom } R)$ $F(x) \le Q(x, x_k).$

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			11/25

Majorize-Minimize strategy [Jacobson & Fessler – 2007]

For every $k \in \mathbb{N}$, there exists an SPD matrix $A_k(x_k) \in \mathbb{R}^{N \times N}$ such that $(\forall x \in \mathbb{R}^N) \quad Q(x, x_k) = F(x_k) + \langle x - x_k \mid \nabla F(x_k) \rangle + \frac{1}{2} ||x - x_k||^2_{A_k(x_k)}$ is a majorant function of F at x_k on dom R, i.e., $F(x_k) = Q(x_k, x_k) \quad \text{and} \quad (\forall x \in \text{dom } R) \quad F(x) \le Q(x, x_k).$

F is differentiable with a β -Lipschitzian gradient on a convex subset of \mathbb{R}^N

 $A_k(x_k) \equiv \beta I_N$ satisfies the majorization condition

[Bertsekas - 1999]

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			12/25

- G satisfies the KL inequality .
- ▶ $\exists (\underline{\nu}, \overline{\nu}) \in]0, +\infty[^2 \text{ such that } (\forall k \in \mathbb{N}) \underline{\nu} I_N \preccurlyeq A_k(x_k) \preccurlyeq \overline{\nu} I_N.$
- The step-size is chosen such that either:
 - $\exists (\underline{\gamma}, \overline{\gamma}) \in]0, +\infty[^2 \text{ such that } (\forall k \in \mathbb{N}) \underline{\gamma} \leq \gamma_k \leq 1 \overline{\gamma}.$
 - *R* is convex and $\exists (\underline{\gamma}, \overline{\gamma}) \in]0, +\infty[^2 \text{ such that } (\forall k \in \mathbb{N}) \underline{\gamma} \leq \gamma_k \leq 2 \overline{\gamma}.$

Global convergence

- * $(x_k)_{k\in\mathbb{N}}$ converges to a critical point \widehat{x} of G.
- ★ $(G(x_k))_{k \in \mathbb{N}}$ is a nonincreasing sequence converging to $G(\widehat{x})$.

Local convergence

If $(\exists v > 0)$ such that $G(x_0) \leq \inf_{x \in \mathbb{R}^N} G(x) + v$, then $(x_k)_{k \in \mathbb{N}}$ converges to a solution \hat{x} to the minimization problem.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	0000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			13/25

Block separable structure

► *R* is an additively block separable function.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	0000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			13/25

Block separable structure

 \triangleright R is an additively block separable function.

Block separable structure

 \triangleright R is an additively block separable function.

 $(\forall j \in \{1, \dots, J\}) \ R_j \colon \mathbb{R}^{N_j} \to] - \infty, +\infty]$ is a proper, lsc function, continuous on its domain and bounded from below by an affine function.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	0000000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			14/25

Block coordinate approach

OPTIMIZATION PROBLEM

Find
$$\widehat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \left\{ G(x) = F(x) + \sum_{j=1}^J R_j(x^{(j)}) \right\}$$

★ PRINCIPLE

At each iteration $k \in \mathbb{N}$, update only a subset of components (~ Gauss-Seidel methods)

ADVANTAGES

- more flexibility,
- reduce computational cost at each iteration,
- reduce memory requirement.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolut	ion of seismic data with a regularized norm	ratio	15/25

Block coordinate VMFB algorithm

Let
$$x_0 \in \text{dom } R$$
.
For $k = 0, 1, ...$
 $\left[\begin{array}{c} \text{Let } j_k \in \{1, ..., J\}, A_{j_k}(x_k) \in \mathbb{R}^{N_{j_k} \times N_{j_k}} \text{ and } \gamma_k \in]0, +\infty[.\\ x_{k+1}^{(j_k)} \in \text{prox}_{\gamma_k^{-1} A_{j_k}(x_k), R_{j_k}} \left(x_k^{(j_k)} - \gamma_k A_{j_k}(x_k)^{-1} \nabla_{j_k} F(x_k) \right) \\ x_{k+1}^{(\overline{j}_k)} = x_k^{(\overline{j}_k)} \end{array} \right]$

where
$$(\forall k \in \mathbb{N}) x_k^{(\overline{\jmath}_k)} = \left(x^{(1)}, \dots, x^{(\overline{\jmath}_k - 1)}, x^{(\overline{\jmath}_k + 1)}, \dots, x^{(J)}\right).$$

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolut	ion of seismic data with a regularized norm	ratio	15/25

Block coordinate VMFB algorithm

Let
$$x_0 \in \text{dom } R$$
.
For $k = 0, 1, ...$
 $\begin{bmatrix} \text{Let } j_k \in \{1, ..., J\}, A_{j_k}(x_k) \in \mathbb{R}^{N_{j_k} \times N_{j_k}} \text{ and } \gamma_k \in]0, +\infty[.\\ x_{k+1}^{(j_k)} \in \text{prox}_{\gamma_k^{-1} A_{j_k}(x_k), R_{j_k}} \left(x_k^{(j_k)} - \gamma_k A_{j_k}(x_k)^{-1} \nabla_{j_k} F(x_k)\right) \\ x_{k+1}^{(\overline{j}_k)} = x_k^{(\overline{j}_k)} \end{bmatrix}$

EXISTING CONVERGENCE RESULTS:

* [Bolte, Sabach & Teboulle - 2013]

When $A_{j_k}(x_k) \equiv I_{N_{j_k}}$ and a cyclic updating rule is adopted.

- * [Frankel, Garrigos & Peypouquet 2014] When $A_{j_k}(x_k)$ is a general SPD matrix and a cyclic updating rule is adopted.
- ★ [Combettes & Pesquet 2014]

In the convex case, when $A_{j_k}(x_k) \equiv I_{N_{j_k}}$ and a random updating rule is adopted.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolutio	n of seismic data with a regularized norn	n ratio	15/25

Block coordinate VMFB algorithm

Let
$$x_0 \in \text{dom } R$$
.
For $k = 0, 1, ...$

$$\begin{bmatrix} \text{Let } j_k \in \{1, ..., J\}, A_{j_k}(x_k) \in \mathbb{R}^{N_{j_k} \times N_{j_k}} \text{ and } \gamma_k \in]0, +\infty[.\\ x_{k+1}^{(j_k)} \in \text{prox}_{\gamma_k^{-1} A_{j_k}(x_k), R_{j_k}} \left(x_k^{(j_k)} - \gamma_k A_{j_k}(x_k)^{-1} \nabla_{j_k} F(x_k) \right) \\ x_{k+1}^{(\overline{j}_k)} = x_k^{(\overline{j}_k)} \end{bmatrix}$$

★ Our contributions:

- \checkmark Convergence in the nonconvex case.
- ✓ Choice of preconditioning matrices $(A_{j_k}(x_k))_{k \in \mathbb{N}}$.
- ✓ General updating rule for $(j_k)_{k \in \mathbb{N}}$.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	00000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			16/25

 Choice of preconditioning matrices (A_{jk}(x_k))_{k∈ℕ} For every k ∈ ℕ, for every j_k ∈ {1,..., J}, A_{jk}(x_k) satisfies the
 MM assumption at x^(j_k)_k for the restriction of F to the block j_k:

$$\mathbf{y} \in \mathbb{R}^{N_{j_k}} \mapsto \mathcal{F}\left(x_k^{(1)}, \dots, x_k^{(j_k-1)}, \mathbf{y}, x_k^{(j_k+1)}, \dots, x_k^{(J)}\right)$$

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	00000000	0000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			16/25

 Choice of preconditioning matrices (A_{jk}(x_k))_{k∈ℕ} For every k ∈ ℕ, for every j_k ∈ {1,..., J}, A_{jk}(x_k) satisfies the
 MM assumption at x_k^(j_k) for the restriction of F to the block j_k:

$$\mathbf{y} \in \mathbb{R}^{N_{j_k}} \mapsto F\left(x_k^{(1)}, \dots, x_k^{(j_k-1)}, \mathbf{y}, x_k^{(j_k+1)}, \dots, x_k^{(J)}\right)$$

► Updating rule for (j_k)_{k∈ℕ}

Blocks $(j_k)_{k \in \mathbb{N}}$ updated according to a quasi-cyclic rule , i.e., there exists $K \geq J$ such that, for every $\ell \in \mathbb{N}$, $\{1, \ldots, J\} \subset \{j_k, \ldots, j_{k+K-1}\}$.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	00000000	0000000	00
Sparse deconvolution of	seismic data with a regularized norm ratio		16/25
Sparse deconvolution of	seismic data with a regularized norm ratio	000000	16/25

 Choice of preconditioning matrices (A_{jk}(x_k))_{k∈ℕ} For every k ∈ ℕ, for every j_k ∈ {1,..., J}, A_{jk}(x_k) satisfies the MM assumption at x_k^(j_k) for the restriction of F to the block j_k:

$$\mathbf{y} \in \mathbb{R}^{N_{j_k}} \mapsto F\left(x_k^{(1)}, \dots, x_k^{(j_k-1)}, \mathbf{y}, x_k^{(j_k+1)}, \dots, x_k^{(J)}\right)$$

► Updating rule for (j_k)_{k∈ℕ}

Blocks $(j_k)_{k\in\mathbb{N}}$ updated according to a quasi-cyclic rule , i.e., there exists $K \geq J$ such that, for every $\ell \in \mathbb{N}$, $\{1, \ldots, J\} \subset \{j_k, \ldots, j_{k+K-1}\}$. Example: J = 3 blocks denoted $\{1, 2, 3\}$

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	00000000	0000000	00
Sparse deconvoluti	on of seismic data with a regularized norm	ratio	16/25

Choice of preconditioning matrices (A_{jk}(x_k))_{k∈ℕ}
 For every k ∈ ℕ, for every j_k ∈ {1,..., J}, A_{jk}(x_k) satisfies the
 MM assumption at x_k^(j_k) for the restriction of F to the block j_k:

$$\mathbf{y} \in \mathbb{R}^{N_{j_k}} \mapsto \mathcal{F}\left(x_k^{(1)}, \dots, x_k^{(j_k-1)}, \mathbf{y}, x_k^{(j_k+1)}, \dots, x_k^{(J)}\right)$$

► Updating rule for (j_k)_{k∈ℕ}

Blocks $(j_k)_{k\in\mathbb{N}}$ updated according to a quasi-cyclic rule , i.e., there exists $K \geq J$ such that, for every $\ell \in \mathbb{N}$, $\{1, \ldots, J\} \subset \{j_k, \ldots, j_{k+K-1}\}$. Example: J = 3 blocks denoted $\{1, 2, 3\}$

- *K* = 3:
 - cyclic updating order: $\{1, 2, 3, 1, 2, 3, \ldots\}$
 - example of quasi-cyclic updating order: $\{1,3,2,\ 2,1,3,\ \ldots\}$

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	00000000	0000000	00
Sparse deconvoluti	on of seismic data with a regularized norm	ratio	16/25

Choice of preconditioning matrices (A_{jk}(x_k))_{k∈ℕ}
 For every k ∈ ℕ, for every j_k ∈ {1,..., J}, A_{jk}(x_k) satisfies the
 MM assumption at x_k^(j_k) for the restriction of F to the block j_k:

$$\mathbf{y} \in \mathbb{R}^{N_{j_k}} \mapsto \mathcal{F}\left(x_k^{(1)}, \dots, x_k^{(j_k-1)}, \mathbf{y}, x_k^{(j_k+1)}, \dots, x_k^{(J)}\right)$$

► Updating rule for (j_k)_{k∈ℕ}

Blocks $(j_k)_{k\in\mathbb{N}}$ updated according to a quasi-cyclic rule , i.e., there exists $K \geq J$ such that, for every $\ell \in \mathbb{N}$, $\{1, \ldots, J\} \subset \{j_k, \ldots, j_{k+K-1}\}$. Example: J = 3 blocks denoted $\{1, 2, 3\}$

- *K* = 3:
 - cyclic updating order: $\{1, 2, 3, 1, 2, 3, ...\}$
 - example of quasi-cyclic updating order: $\{1,3,2,\ 2,1,3,\ \ldots\}$
- K = 4: possibility to update some blocks more than once every K iteration
 - $\{1, 3, 2, 2, 2, 2, 1, 3, \ldots\}$

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	00000000	0000000	00
Sparse deconvolution of	seismic data with a regularized norm ratio		16/25
Sparse deconvolution of	seismic data with a regularized norm ratio	000000	16/25

Choice of preconditioning matrices (A_{jk}(x_k))_{k∈ℕ}
 For every k ∈ ℕ, for every j_k ∈ {1,..., J}, A_{jk}(x_k) satisfies the
 MM assumption at x_k^(j_k) for the restriction of F to the block j_k:

$$\mathbf{y} \in \mathbb{R}^{N_{j_k}} \mapsto F\left(x_k^{(1)}, \dots, x_k^{(j_k-1)}, \mathbf{y}, x_k^{(j_k+1)}, \dots, x_k^{(J)}\right)$$

► Updating rule for (j_k)_{k∈ℕ}

Blocks $(j_k)_{k \in \mathbb{N}}$ updated according to a quasi-cyclic rule , i.e., there exists $K \ge J$ such that, for every $\ell \in \mathbb{N}$, $\{1, \ldots, J\} \subset \{j_k, \ldots, j_{k+K-1}\}$.

Same convergence results as for the VMFB algorithm:

- ► Global convergence to a critical point of G.
 - Local convergence to a minimizer of G.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	●000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			17/25

Seismic blind deconvolution problem

where

- ▶ $y \in \mathbb{R}^{N_1}$ observed signal ($N_1 = 784$)
- ► $\overline{s} \in \mathbb{R}^{N_1}$ unknown sparse original seismic signal
- ▶ $\overline{h} \in \mathbb{R}^{N_2}$ unknown original blur kernel ($N_2 = 41$)

▶ $w \in \mathbb{R}^{N_1}$ additive noise: realization of a zero-mean white Gaussian noise with variance σ^2

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			18/25

Proposed criterion

Observation model: $y = \overline{h} * \overline{s} + w$

$$\underset{s \in \mathbb{R}^{N_1}, h \in \mathbb{R}^{N_2}}{\text{minimize}} \quad (G(s, h) = F(s, h) + R_1(s) + R_2(h))$$

*
$$F(s, h) = \rho(s, h) + \varphi(s)$$
, where
• $\rho(s, h) = \frac{1}{2} ||h * s - y||^2 \rightsquigarrow \text{data fidelity term,}$
• $\varphi(s) = \lambda \log \left(\frac{\ell_{1,\alpha}(s) + \beta}{\ell_{2,\eta}(s)} \right) \rightsquigarrow \text{smooth regularization term,}$
with $\ell_{1,\alpha}$ (resp. $\ell_{2,\eta}$) smooth approximation of ℓ_1 -norm (resp.
 ℓ_2 -norm), for $(\alpha, \beta, \eta, \lambda) \in]0, +\infty[^4$.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			18/25

Proposed criterion

Observation model: $y = \overline{h} * \overline{s} + w$

$$\min_{s \in \mathbb{R}^{N_1}, h \in \mathbb{R}^{N_2}} \ \left(G(s,h) = F(s,h) + R_1(s) + R_2(h) \right)$$

*
$$F(s, h) = \rho(s, h) + \varphi(s)$$
, where
• $\rho(s, h) = \frac{1}{2} ||h * s - y||^2 \rightsquigarrow \text{ data fidelity term,}$
• $\varphi(s) = \lambda \log \left(\frac{\ell_{1,\alpha}(s) + \beta}{\ell_{2,\eta}(s)} \right) \rightsquigarrow \text{ smooth regularization term,}$
with $\ell_{1,\alpha}$ (resp. $\ell_{2,\eta}$) smooth approximation of ℓ_1 -norm (resp.
 ℓ_2 -norm), for $(\alpha, \beta, \eta, \lambda) \in]0, +\infty[^4.$
* $\ell_{1,\alpha}(s) = \sum_{n=1}^{N} \left(\sqrt{(s^{(n)})^2 + \alpha^2} - \alpha \right).$

*
$$\ell_{2,\eta}(s) = \sqrt{\sum_{n=1}^{N} (s^{(n)})^2 + \eta^2}.$$

Introduction 0000	Proposed minimization method	Seismic blind deconvolution problem	Conclusion 00
Sparse deconvolution	of seismic data with a regularized norm ratio		18/25

Proposed criterion

Observation model: $y = \overline{h} * \overline{s} + w$

$$\underset{s \in \mathbb{R}^{N_1}, h \in \mathbb{R}^{N_2}}{\text{minimize}} \quad (G(s, h) = F(s, h) + R_1(s) + R_2(h))$$

★
$$F(s,h) = \rho(s,h) + \varphi(s)$$
, where
• $\rho(s,h) = \frac{1}{2} ||h * s - y||^2$ → data fidelity term,
• $\varphi(s) = \lambda \log \left(\frac{\ell_{1,\alpha}(s) + \beta}{\ell_{2,\eta}(s)} \right)$ → smooth regularization term,
with $\ell_{1,\alpha}$ (resp. $\ell_{2,\eta}$) smooth approximation of ℓ_1 -norm (resp.
 ℓ_2 -norm), for $(\alpha, \beta, \eta, \lambda) \in]0, +\infty[^4$.

•
$$R_1(s) = \iota_{[s_{\min}, s_{\max}]} \kappa_1(s)$$
, with $(s_{\min}, s_{\max}) \in]0, +\infty[^2$.

• $R_2(h) = \iota_{\mathcal{C}}(h)$, with $\mathcal{C} = \{h \in [h_{\min}, h_{\max}]^{N_2} \mid ||h|| \le \delta\}$, for $(h_{\min}, h_{\max}, \delta) \in]0, +\infty[^3.$

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	000000	00
Sparse deconvolution of s	eismic data with a regularized norm ratio		19/25

SOOT algorithm

Let
$$s_0 \in \text{dom } R_1$$
 and $h_0 \in \text{dom } R_2$.
For $k = 0, 1, ...$
Let $(K_s, K_h) \in (\mathbb{N}^*)^2$, $A_1(s_k, h_k) \in \mathbb{R}^{N_1 \times N_1}$, $A_2(s_k, h_k) \in \mathbb{R}^{N_2 \times N_2}$,
and $\gamma_k \in]0, +\infty[$. Let $s_{k,0} = s_k$, and $h_{k,0} = h_k$.
For $j = 1, ..., K_s$
 $\begin{bmatrix} s_{k+1,j} \in \text{prox}_{\gamma_k^{-1}A_1(s_{k,j},h_k), R_1} (s_{k,j} - \gamma_k A_1(s_{k,j}, h_k))^{-1} \nabla_1 F(s_{k,j}, h_k)) \\ s_{k+1} = s_{k,K_s}.$
For $i = 1, ..., K_h$
 $\begin{bmatrix} h_{k+1,i} \in \text{prox}_{\gamma_k^{-1}A_2(s_{k+1}, h_{k,i}), R_1} (s_{k,j} - \gamma_k A_2(s_{k+1}, h_{k,i}))^{-1} \nabla_1 F(s_{k+1}, h_{k,i})) \\ h_{k+1} = h_{k,K_h}.$

Assume that there exists $(\underline{\nu}, \overline{\nu}) \in]0, +\infty[^2$ such that, for all $k \in \mathbb{N}$, $(\forall j \in \{0, \dots, K_s - 1\}) \quad \underline{\nu} \, \mathsf{I}_{N_1} \preceq A_1(s_{k,j}, h_k) \preceq \overline{\nu} \, \mathsf{I}_{N_1},$ $(\forall i \in \{0, \dots, K_h - 1\}) \quad \underline{\nu} \, \mathsf{I}_{N_2} \preceq A_2(s_{k+1}, h_{k,i}) \preceq \overline{\nu} \, \mathsf{I}_{N_2}.$ Thus $(s_k, h_k)_{k \in \mathbb{N}}$ converges to a critical point $(\widehat{s}, \widehat{h})$ of G and $(G(s_k, h_k))_{k \in \mathbb{N}}$ is a nonincreasing sequence converging to $G(\widehat{s}, \widehat{h})$.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	000000	00
Sparse deconvolution of seismic data with a regularized norm ratio			20/25

SOOT algorithm: preconditioning matrices

Construction of the quadratic majorants

For every $(s,h) \in \mathbb{R}^{N_1} imes \mathbb{R}^{N_2}$, let

$$\begin{split} A_1(s,h) &= \left(L_1(h) + \frac{9\lambda}{8\eta^2} \right) \mathsf{I}_{N_1} + \frac{\lambda}{\ell_{1,\alpha}(s) + \beta} \mathsf{A}_{\ell_{1,\alpha}}(s) \\ A_2(s,h) &= L_2(s) \mathsf{I}_{N_2}, \end{split}$$

where

$$A_{\ell_{1,\alpha}}(s) = \mathsf{Diag}\left(\left(((s^{(n)})^2 + \alpha^2)^{-1/2}\right)_{1 \le n \le N_1}\right),$$

and $L_1(h)$ (resp. $L_2(s)$) is a Lipschitz constant for $\nabla_1 \rho(\cdot, h)$ (resp. $\nabla_2 \rho(s, \cdot)$). Then, $A_1(s, h)$ (resp. $A_2(s, h)$) satisfies the majoration condition for $F(\cdot, h)$ at s (resp. $F(s, \cdot)$ at h).

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution of	seismic data with a regularized norm ratio		21/25

Algorithm behavior

Effect of the quasi-cyclic rule on convergence speed

 K_s : number of iterations on s for one iteration on h

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	0000000	00
Sparse deconvolution	of seismic data with a regularized norm ratio		22/25

Numerical results

	Noise level (σ)			0.02	0.03
Obc	onvotion arror	$\ell_2 \ (\times 10^{-2})$	7.14	7.35	7.68
Obs		$\ell_1 \; (imes 10^{-2})$	2.85	3.44	4.09
	Krishnan et al. 2011	$\ell_2 \ (\times 10^{-2})$	1.23	1.66	1.84
Signal error		$\ell_1 \ (imes 10^{-3})$	3.79	4.69	5.30
Signal error	SOOT	$\ell_2 \ (\times 10^{-2})$	1.09	1.63	1.83
		$\ell_1 \; (imes 10^{-3})$	3.42	4.30	4.85
	Krishnan <i>et al</i> ., 2011	$\ell_2 \ (\times 10^{-2})$	1.88	2.51	3.21
Kornol orror		$\ell_1 \ (imes 10^{-2})$	1.44	1.96	2.53
Kenner en or	тоот	$\ell_2 \ (\times 10^{-2})$	1.62	2.26	2.93
	3001	$\ell_1 \; (imes 10^{-2})$	1.22	1.77	2.31
Time(c)	Krishnan <i>et al.</i>	, 2011	106	61	56
rine (s.)	SOOT		56	22	18

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	000000	00
Sparse deconvolution o	f seismic data with a regularized norm ratio		23/25

Numerical results

Sparse seismic reflectivity signal recovery

- Continuous red line: 5
- Dashed black line: \hat{s}

Introduction 0000	Proposed minimization method	Seismic blind deconvolution problem	Conclusion 00
Sparse deconvolution	of seismic data with a regularized norm ratio		23/25

Numerical results

Band-pass seismic "wavelet" recovery

- Continuous red line: \overline{h}
- Dashed black line: \hat{h}

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	000000	•0
Sparse deconvolution o	f seismic data with a regularized norm ratio		24/25

Conclusion

 \rightsquigarrow Smooth parametric approximations to the ℓ_1/ℓ_2 norm ratio.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	000000	0
Sparse deconvolution	n of seismic data with a regularized norm ra	atio	24/25

Conclusion

- \rightsquigarrow Smooth parametric approximations to the ℓ_1/ℓ_2 norm ratio.
- → Proposition of the SOOT algorithm based on a new BC-VMFB algorithm for minimizing the sum of
 - a nonconvex smooth function F,
 - a nonconvex non necessarily smooth function R.
- → Convergence results both on iterates and function values.
- → Blocks updated according to a flexible quasi-cyclic rule.
- Acceleration of the convergence thanks to the choice of preconditioning matrices based on MM principle.

Introduction	Proposed minimization method	Seismic blind deconvolution problem	Conclusion
0000	000000000	000000	•0
Sparse deconvolution of	of seismic data with a regularized norm	ratio	24/25

Conclusion

- \rightsquigarrow Smooth parametric approximations to the ℓ_1/ℓ_2 norm ratio.
- → Proposition of the SOOT algorithm based on a new BC-VMFB algorithm for minimizing the sum of
 - a nonconvex smooth function F,
 - a nonconvex non necessarily smooth function R.
- → Convergence results both on iterates and function values.
- → Blocks updated according to a flexible quasi-cyclic rule.
- Acceleration of the convergence thanks to the choice of preconditioning matrices based on MM principle.
- \rightsquigarrow Application to sparse blind deconvolution .
- ~ Results demonstrated on sparse seismic reflectivity series.

Introduc 0000	tion	Proposed minimization method	Seismic blind deconvolution problem	Conclusion ○●
Sparse d	leconvo	lution of seismic data with a regularized norm	ı ratio	25/25
		Some	references	
		E. Chouzenoux, JC. Pesquet <i>A block coordinate variable me</i> Tech. Rep., 2013. Available on http://www.optimization-onlin	and A. Repetti. e <i>tric Forward-Backward algorithm</i> . e.org/DB_HTML/2013/12/4178.html.	
		E. Chouzenoux, JC. Pesquet Variable metric Forward-Backv a differentiable function and a J. Optim. Theory and Appl., v	and A. Repetti. <i>vard algorithm for minimizing the sum convex function.</i> ol.162, no. 1, pp. 107-132, Jul. 2014.	of
		E. Chouzenoux, JC. Pesquet A preconditioned Forward-Back large-scale nonconvex spectral ICASSP 2014, Florence, Italie,	and A. Repetti. <i>kward approach with application to</i> unmixing problems. 4-9 May 2014.	
		A. Repetti, M.Q. Pham, L. Du <i>Euclid in a taxicab: sparse blin</i> regularization.	val, E. Chouzenoux and JC. Pesquet. d deconvolution with smoothed ℓ_1/ℓ_2	

IEEE Signal Processing Letters, May 2015.