Motivations	Inverse problems
00	00

FB and MM tools

Seismic blind deconvolution problem 0000

1/20

Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution

Un taxi pour Euclide (et non Tobrouk) : déconvolution aveugle parcimonieuse, un algorithme préconditionné avec ratio de normes ℓ_1/ℓ_2

> Laurent Duval IFP Energies nouvelles

GdR ISIS — Problèmes inverses ; approches myopes et aveugles, semi- et non-supervisées — 6 novembre 2014

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution				2/20

Taxi passengers

A. Repetti

M. Q. Pham

E. Chouzenoux J.-C. Pesquet

Motivations on blind deconvolution

Blind deconvolution $y = \overline{h} * \overline{s} + w$, with sparse latent signals

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
•0	00	0000000	0000	000
Euclid in a Taxio	cab: ℓ_1/ℓ_2 sparse blind	d deconvolution		3/20

Motivations on blind deconvolution

Blind deconvolution $y = \overline{h} * \overline{s} + w$, with sparse latent signals

- \overline{h} : (unknown) impulse response
 - blur, linear sensor response, point spread function, seismic wavelet, spectral broadening
- ▶ Objective: find estimates $(\hat{s}, \hat{h}) \in \mathbb{R}^{N_1} \times \mathbb{R}^{N_2}$ using an optimization approach
- Many works on Euclidean (ℓ_2) and Taxicab (ℓ_1) penalties

Scale-ambiguity \rightsquigarrow focus on a scale-invariant contrast function

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	000
Euclid in a Ta	xicab: ℓ_1/ℓ_2 sparse blin	d deconvolution		4/20

Taxicab-Euclidean norm ratio

- $\blacktriangleright \ \ell_2 \leq \ell_1 \leq \sqrt{N} \ell_2$
- Scale-invariant "measure" of sparsity
- Used in the last decade in:
 - Non-negative Matrix Factorization (NMF, Hoyer, 2004)
 - Sharpness constraint on wavelet coefficients in images
 - Non-destructive testing/evaluation (NDT/NDE)
 - Sparse recovery
- Bonuses:
 - ▶ Potential avoidance of pitfalls (Benichoux *et al.*, 2013)
 - ► Earlier mentions in geophysics (Variable norm decon., 1978)

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	000
Euclid in a Tax	icab: ℓ_1/ℓ_2 sparse blin		4/20	

Comparison of different measures

•
$$a_n = 1/N$$
 for $n \in \{0, ..., N-1\}$

▶
$$b_0 = 1$$
 and $b_n = 0$ for $n \in \{1, \dots, N-1\}$

• Same
$$\ell_1$$
 norm: $\|a\|_1 = \|b\|_1 = 1$

•
$$\|a\|_0 = N \ge \|b\|_0 = 1$$

•
$$\|a\|_1/\|a\|_2 = \sqrt{N} \ge \|b\|_1/\|b\|_2 = 1$$

• Evaluation of ℓ_1/ℓ_2 for power laws $x \to x^p$, (p > 0)

Power law p = 128

Seismic blind deconvolution problem $_{\rm OOOO}$

4/20

Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution

Formulation

INVERSE PROBLEM: Estimation of an object of interest $\overline{x} \in \mathbb{R}^N$ obtained by minimizing an objective function

$$G = F + R$$

where

- ► *F* is a data-fidelity term related to the observation model
- *R* is a regularization term related to some a priori assumptions on the target solution
 - \rightsquigarrow e.g. an a priori on the smoothness of a signal,
 - \rightsquigarrow e.g. a support constraint,
 - \rightsquigarrow e.g. a sparsity/sparseness enforcement,
 - \rightsquigarrow e.g. amplitude/energy bounds.

Formulation

INVERSE PROBLEM: Estimation of an object of interest $\overline{x} \in \mathbb{R}^N$ obtained by minimizing an objective function

$$G = F + R$$

where

- ► *F* is a data-fidelity term related to the observation model
- R is a regularization term related to some a priori assumptions on the target solution

In the context of large scale problems, how to find an optimization algorithm able to deliver a reliable numerical solution in a reasonable time, with low memory requirement ?

 $\Rightarrow \mbox{Block alternating minimization.} \\ \Rightarrow \mbox{Variable metric.}$

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	0•	0000000	0000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution				6/20

Minimization problem

Problem

Find
$$\hat{x} \in \operatorname{Argmin}\{G = F + R\},\$$

where:

- $F : \mathbb{R}^N \to \mathbb{R}$ is differentiable, and has an *L*-Lipschitz gradient on dom *R*, i.e. $(\forall (x, y) \in (\operatorname{dom} R)^2) \quad \|\nabla F(x) - \nabla F(y)\| \leq L \|x - y\|,$
- $R \colon \mathbb{R}^N \to]-\infty, +\infty]$ is proper, lower semicontinuous.

 G is coercive, i.e. lim_{||x||→+∞} G(x) = +∞, and is non necessarily convex.

Euclid in a	Taxicah: l1/lo sparse blin	d deconvolution		7/20
00	00	●000000	0000	000
Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses

Forward-Backward algorithm

FB Algorithm

Let
$$x_0 \in \mathbb{R}^N$$

For $\ell = 0, 1, ...$
 $\lfloor x_{\ell+1} \in \operatorname{prox}_{\gamma_{\ell} R} (x_{\ell} - \gamma_{\ell} \nabla F(x_{\ell})), \quad \gamma_{\ell} \in]0, +\infty[.$

► Let
$$x \in \mathbb{R}^N$$
. The proximity operator is defined by
 $\operatorname{prox}_{\gamma_\ell R}(x) = \operatorname{Argmin}_{y \in \mathbb{R}^N} R(y) + \frac{1}{2\gamma_\ell} \|y - x\|^2$.

\rightsquigarrow When *R* is nonconvex:

- Non necessarily uniquely defined.
- Existence guaranteed if *R* is bounded from below by an affine function.

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	●000000	0000	000
Euclid in a Tax	kicab: ℓ_1 / ℓ_2 sparse blir	nd deconvolution		7/20

Forward-Backward algorithm

FB Algorithm

Let
$$x_0 \in \mathbb{R}^N$$

For $\ell = 0, 1, ...$
 $\lfloor x_{\ell+1} \in \operatorname{prox}_{\gamma_{\ell} R} (x_{\ell} - \gamma_{\ell} \nabla F(x_{\ell})), \quad \gamma_{\ell} \in]0, +\infty[.$

► Let
$$x \in \mathbb{R}^N$$
. The proximity operator is defined by
 $\operatorname{prox}_{\gamma_\ell R}(x) = \operatorname{Argmin}_{y \in \mathbb{R}^N} R(y) + \frac{1}{2\gamma_\ell} \|y - x\|^2$.

\rightsquigarrow When *R* is nonconvex:

- Non necessarily uniquely defined.
- Existence guaranteed if *R* is bounded from below by an affine function.

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	●000000	0000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution				7/20

Variable Metric Forward-Backward algorithm

VMFB Algorithm

Let
$$x_0 \in \mathbb{R}^N$$

For $\ell = 0, 1, ...$
 $\begin{cases} x_{\ell+1} \in \operatorname{prox}_{\gamma_{\ell}^{-1} | A_{\ell}(x_{\ell}) |}, R \left(x_{\ell} - \gamma_{\ell} | A_{\ell}(x_{\ell}) \right) & -1 \nabla F(x_{\ell}) \\ \text{with } \gamma_{\ell} \in]0, +\infty[, \text{ and } | A_{\ell}(x_{\ell}) | a \text{ SDP matrix.} \end{cases}$

Let x ∈ ℝ^N. The proximity operator relative to the metric induced by A_ℓ(x_ℓ) is defined by
 prox_{γℓ⁻¹A_ℓ(x_ℓ), R}(x) = Argmin_{y∈ℝ^N} R(y) + 1/(2γ_ℓ) ||y − x||²_{Aℓ(xℓ)}.

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	●000000	0000	000
Euclid in a Ta	axicab: ℓ_1/ℓ_2 sparse blir	nd deconvolution		7/20

Variable Metric Forward-Backward algorithm

VMFB Algorithm

Let
$$x_0 \in \mathbb{R}^N$$

For $\ell = 0, 1, ...$
 $\begin{cases} x_{\ell+1} \in \operatorname{prox}_{\gamma_{\ell}^{-1} A_{\ell}(x_{\ell})}, R \left(x_{\ell} - \gamma_{\ell} A_{\ell}(x_{\ell}) \right)^{-1} \nabla F(x_{\ell}) \\ \text{with } \gamma_{\ell} \in]0, +\infty[, \text{ and } A_{\ell}(x_{\ell})] \text{ a SDP matrix.} \end{cases}$

Let x ∈ ℝ^N. The proximity operator relative to the metric induced by A_ℓ(x_ℓ) is defined by
 prox_{γℓ⁻¹A_ℓ(x_ℓ), R}(x) = Argmin_{y∈ℝ^N} R(y) + 1/(2γ_ℓ) ||y − x||²_{Aℓ(xℓ)}.

Convergence is established for a wide class of nonconvex functions G and (A_ℓ(x_ℓ))_{ℓ∈ℕ} are general SDP matrices in [Chouzenoux *et al.*, 2013]

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	000000	0000	000
Euclid in a Taxi	cab: ℓ_1/ℓ_2 sparse blin	d deconvolution		8/20

Block separable structure

► *R* is an additively block separable function.

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	000000	0000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution				8/20

Block separable structure

► *R* is an additively block separable function.

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	000000	0000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution			8/20	

Block separable structure

► *R* is an additively block separable function.

continuous on its domain and bounded from below by an affine function.

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	000000	0000	000
Euclid in a Taxi		9/20		

BC Forward-Backward algorithm

BC-FB Algorithm [Bolte et al., 2013]

Let
$$x_0 \in \mathbb{R}^N$$

For $\ell = 0, 1, ...$
 $\left| \begin{array}{c} \text{Let } j_\ell \in \{1, \dots, J\}, \\ x_{\ell+1}^{(j_\ell)} \in \operatorname{prox}_{\gamma_\ell R_{j_\ell}} \left(x_\ell^{(j_\ell)} - \gamma_\ell \nabla_{j_\ell} F(x_\ell) \right), \quad \gamma_\ell \in]0, +\infty[\\ x_{\ell+1}^{(\overline{j_\ell})} = x_\ell^{(\overline{j_\ell})}. \end{array} \right|$

Advantages of a block coordinate strategy:

- more flexibility,
- reduce computational cost at each iteration,
- reduce memory requirement.

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	000000	0000	000
Euclid in a Ta	xicab: ℓ_1/ℓ_2 sparse blir	d deconvolution		10/20

BC Variable Metric Forward-Backward algorithm

BC-VMFB Algorithm

Let
$$x_0 \in \mathbb{R}^N$$

For $\ell = 0, 1, ...$
Let $j_\ell \in \{1, ..., J\}$,
 $x_{\ell+1}^{(j_\ell)} \in \operatorname{prox}_{\gamma_\ell^{-1}} \underset{A_{j_\ell}(x_\ell), R_{j_\ell}}{\operatorname{R}_{j_\ell}} \left(x_\ell^{(j_\ell)} - \gamma_\ell \underset{A_{j_\ell}(x_\ell)}{\operatorname{A}_{j_\ell}(x_\ell)} \right)^{-1} \nabla_{j_\ell} F(x_\ell)$,
 $x_{\ell+1}^{(\overline{j}_\ell)} = x_\ell^{(\overline{j}_\ell)}$,
with $\gamma_\ell \in]0, +\infty[$, and $A_{j_\ell}(x_\ell)$ a SDP matrix.

OUR CONTRIBUTIONS:

- How to choose the preconditioning matrices (A_{jℓ}(x_ℓ))_{ℓ∈ℕ}?
 → Majorize-Minimize principle.
- How to define a general update rule for (j_ℓ)_{ℓ∈ℕ}?
 → Quasi-cyclic rule.

Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution					11/20
	00	00	0000000	0000	000
	Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses

Majorize-Minimize assumption

[Jacobson et al., 2007]

MM Assumption

 $(\forall \ell \in \mathbb{N})$ there exists a lower and upper bounded SDP matrix $A_{j_{\ell}}(x_{\ell}) \in \mathbb{R}^{N_{j_{\ell}} \times N_{j_{\ell}}}$ such that $(\forall y \in \mathbb{R}^{N_{j_{\ell}}})$

$$\begin{aligned} \mathcal{Q}_{j_{\ell}}(y \,|\, x_{\ell}) &= \mathcal{F}(x_{\ell}) + (y - x_{\ell}^{(j_{\ell})})^{\top} \nabla_{j_{\ell}} \mathcal{F}(x_{\ell}) \\ &+ \frac{1}{2} \|y - x_{\ell}^{(j_{\ell})}\|_{A_{j_{\ell}}(x_{\ell})}^{2}, \end{aligned}$$

is a *majorant function* on dom $R_{j_{\ell}}$ of the restriction of F to its j_{ℓ} -th block at $x_{\ell}^{(j_{\ell})}$, i.e., $(\forall y \in \text{dom } R_{j_{\ell}})$

$$\mathsf{F}\left(x_{\ell}^{(1)},\ldots,x_{\ell}^{(j_{\ell}-1)},y,x_{\ell}^{(j_{\ell}+1)},\ldots,x_{\ell}^{(J)}\right) \\ \leq \mathcal{Q}_{j_{\ell}}(y \mid x_{\ell}).$$

Majorize-Minimize assumption

[Jacobson et al., 2007]

MM Assumption

 $(\forall \ell \in \mathbb{N})$ there exists a lower and upper bounded SDP matrix $A_{j_{\ell}}(x_{\ell}) \in \mathbb{R}^{N_{j_{\ell}} \times N_{j_{\ell}}}$ such that $(\forall y \in \mathbb{R}^{N_{j_{\ell}}})$

$$\begin{aligned} \mathcal{Q}_{j_{\ell}}(y \,|\, x_{\ell}) &= \mathcal{F}(x_{\ell}) + (y - x_{\ell}^{(j_{\ell})})^{\top} \nabla_{j_{\ell}} \mathcal{F}(x_{\ell}) \\ &+ \frac{1}{2} \|y - x_{\ell}^{(j_{\ell})}\|_{A_{j_{\ell}}(x_{\ell})}^{2}, \end{aligned}$$

is a *majorant function* on dom $R_{j_{\ell}}$ of the restriction of F to its j_{ℓ} -th block at $x_{\ell}^{(j_{\ell})}$, i.e., $(\forall y \in \text{dom } R_{j_{\ell}})$

$$\mathsf{F}\left(x_{\ell}^{(1)},\ldots,x_{\ell}^{(j_{\ell}-1)},y,x_{\ell}^{(j_{\ell}+1)},\ldots,x_{\ell}^{(J)}\right) \\ \leq Q_{j_{\ell}}(y \mid x_{\ell}).$$

dom <i>R</i> is convex and <i>F</i> is		The above assumption holds if
L-Lipschitz differentiable	\Rightarrow	$(orall \ell \in \mathbb{N}) \; A_{j_\ell}(x_\ell) \equiv L I_{N_{j_\ell}}$

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution				12/20

Additional assumptions

► G satisfies the Kurdyka-Łojasiewicz inequality [Attouch *et al.*, 2011]:

For every $\xi \in \mathbb{R}$, for every bounded $E \subset \mathbb{R}^N$, there exist $\kappa, \zeta > 0$ and $\theta \in [0, 1)$ such that, for every $x \in E$ such that $|G(x) - \xi| \leq \zeta$,

 $(\forall r \in \partial R(x))$ $\|\nabla F(x) + r\| \ge \kappa |G(x) - \xi|^{\theta}.$

Technical assumption satisfied for a wide class of nonconvex functions

- semi-algebraic functions
- real analytic functions
- ...

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution				12/20

Additional assumptions

► *G* satisfies the Kurdyka-Łojasiewicz inequality [Attouch *et al.*, 2011]:

For every $\xi \in \mathbb{R}$, for every bounded $E \subset \mathbb{R}^N$, there exist $\kappa, \zeta > 0$ and $\theta \in [0, 1)$ such that, for every $x \in E$ such that $|G(x) - \xi| \leq \zeta$,

 $(\forall r \in \partial R(x))$ $\|\nabla F(x) + r\| \ge \kappa |G(x) - \xi|^{\theta}.$

Technical assumption satisfied for a wide class of nonconvex functions

- semi-algebraic functions
- real analytic functions
- ...
- \rightsquigarrow So far, almost every practically useful function imagined

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution				

Additional assumptions

► G satisfies the Kurdyka-Łojasiewicz inequality [Attouch *et al.*, 2011]:

For every $\xi \in \mathbb{R}$, for every bounded $E \subset \mathbb{R}^N$, there exist $\kappa, \zeta > 0$ and $\theta \in [0, 1)$ such that, for every $x \in E$ such that $|G(x) - \xi| \leq \zeta$,

$$ig(orall r\in\partial R(x)ig) \qquad \|
abla F(x)+r\|\geq\kappa|G(x)-\xi|^{ heta}.$$

Technical assumption satisfied for a wide class of nonconvex functions

▶ Blocks $(j_{\ell})_{\ell \in \mathbb{N}}$ updated according to a quasi-cyclic rule, i.e., there exists $K \ge J$ such that, for every $\ell \in \mathbb{N}$, $\{1, \ldots, J\} \subset \{j_{\ell}, \ldots, j_{\ell+K-1}\}$.

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution			12/20	

Additional assumptions

► *G* satisfies the Kurdyka-Łojasiewicz inequality [Attouch *et al.*, 2011]:

For every $\xi \in \mathbb{R}$, for every bounded $E \subset \mathbb{R}^N$, there exist $\kappa, \zeta > 0$ and $\theta \in [0, 1)$ such that, for every $x \in E$ such that $|G(x) - \xi| \le \zeta$,

 $(\forall r \in \partial R(x))$ $\|\nabla F(x) + r\| \ge \kappa |G(x) - \xi|^{\theta}.$

Technical assumption satisfied for a wide class of nonconvex functions

Blocks (j_ℓ)_{ℓ∈ℕ} updated according to a quasi-cyclic rule, i.e., there exists K ≥ J such that, for every ℓ ∈ ℕ, {1,..., J} ⊂ {j_ℓ,..., j_{ℓ+K-1}}.
 Example: J = 3 blocks denoted {1,2,3}

- *K* = 3:
 - cyclic updating order: $\{1, 2, 3, 1, 2, 3, \ldots\}$
 - example of quasi-cyclic updating order: {1, 3, 2, 2, 1, 3, ...}

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution			12/20	

Additional assumptions

► G satisfies the Kurdyka-Łojasiewicz inequality [Attouch *et al.*, 2011]:

For every $\xi \in \mathbb{R}$, for every bounded $E \subset \mathbb{R}^N$, there exist $\kappa, \zeta > 0$ and $\theta \in [0, 1)$ such that, for every $x \in E$ such that $|G(x) - \xi| \leq \zeta$,

 $(\forall r \in \partial R(x))$ $\|\nabla F(x) + r\| \ge \kappa |G(x) - \xi|^{\theta}.$

Technical assumption satisfied for a wide class of nonconvex functions

- Blocks (j_ℓ)_{ℓ∈ℕ} updated according to a quasi-cyclic rule, i.e., there exists K ≥ J such that, for every ℓ ∈ ℕ, {1,..., J} ⊂ {j_ℓ,..., j_{ℓ+K-1}}.
 Example: J = 3 blocks denoted {1,2,3}
 - *K* = 3:
 - cyclic updating order: $\{1, 2, 3, 1, 2, 3, \ldots\}$
 - example of quasi-cyclic updating order: $\{1, 3, 2, 2, 1, 3, \ldots\}$
 - K = 4: possibility to update some blocks more than once every K iteration
 - $\{1, 3, 2, 2, 2, 2, 1, 3, \ldots\}$

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution				

Additional assumptions

► G satisfies the Kurdyka-Łojasiewicz inequality [Attouch *et al.*, 2011]:

For every $\xi \in \mathbb{R}$, for every bounded $E \subset \mathbb{R}^N$, there exist $\kappa, \zeta > 0$ and $\theta \in [0, 1)$ such that, for every $x \in E$ such that $|G(x) - \xi| \leq \zeta$,

 $(\forall r \in \partial R(x))$ $\|\nabla F(x) + r\| \ge \kappa |G(x) - \xi|^{\theta}.$

Technical assumption satisfied for a wide class of nonconvex functions

▶ Blocks $(j_{\ell})_{\ell \in \mathbb{N}}$ updated according to a quasi-cyclic rule, i.e., there exists $K \ge J$ such that, for every $\ell \in \mathbb{N}$, $\{1, \ldots, J\} \subset \{j_{\ell}, \ldots, j_{\ell+K-1}\}$.

The step-size is chosen such that:

- $\exists (\gamma, \overline{\gamma}) \in (0, +\infty)^2$ such that $(\forall \ell \in \mathbb{N}) \ \gamma \leq \gamma_\ell \leq 1 \overline{\gamma}.$
- For every $j \in \{1, ..., J\}$, R_j is a convex function and $\exists (\underline{\gamma}, \overline{\gamma}) \in (0, +\infty)^2$ such that $(\forall \ell \in \mathbb{N}) \ \underline{\gamma} \leq \gamma_\ell \leq 2 - \overline{\gamma}$.

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	000000	0000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution			13/20	

Convergence theorem

Let $(x_\ell)_{\ell\in\mathbb{N}}$ be a sequence generated by the BC-VMFB algorithm.

- Global convergence:
 - $\rightsquigarrow (x_{\ell})_{\ell \in \mathbb{N}}$ converges to a critical point \widehat{x} of G.
 - $\rightsquigarrow (G(x_{\ell}))_{\ell \in \mathbb{N}}$ is a nonincreasing sequence converging to $G(\widehat{x})$.
- Local convergence:

If $(\exists v > 0)$ such that $G(x_0) \leq \inf_{x \in \mathbb{R}^N} G(x) + v$, then $(x_\ell)_{\ell \in \mathbb{N}}$ converges to a solution \hat{x} to the minimization problem.

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	000000	0000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution				13/20

Convergence theorem

Let $(x_\ell)_{\ell\in\mathbb{N}}$ be a sequence generated by the BC-VMFB algorithm.

- Global convergence:
 - $\rightsquigarrow (x_{\ell})_{\ell \in \mathbb{N}}$ converges to a critical point \widehat{x} of G.

 $\rightsquigarrow (G(x_{\ell}))_{\ell \in \mathbb{N}}$ is a nonincreasing sequence converging to $G(\widehat{x})$.

Local convergence:

If $(\exists v > 0)$ such that $G(x_0) \leq \inf_{x \in \mathbb{R}^N} G(x) + v$, then $(x_\ell)_{\ell \in \mathbb{N}}$ converges to a solution \hat{x} to the minimization problem.

→ Similar results in [Frankel *et al.*, 2014] restricted to a cyclic updating rule for $(j_{\ell})_{\ell \in \mathbb{N}}$.

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	●000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution				14/20

Seismic blind deconvolution problem

where

- ▶ $y \in \mathbb{R}^{N_1}$ observed signal ($N_1 = 784$)
- ▶ $\overline{s} \in \mathbb{R}^{N_1}$ unknown sparse original seismic signal
- ▶ $\overline{h} \in \mathbb{R}^{N_2}$ unknown original blur kernel ($N_2 = 41$)

▶ $w \in \mathbb{R}^{N_1}$ additive noise: realization of a zero-mean white Gaussian noise with variance σ^2

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution				15/20

Proposed criterion

Observation model: $y = \overline{h} * \overline{s} + w$

$$\min_{s \in \mathbb{R}^{N_1}, h \in \mathbb{R}^{N_2}} \ \left(G(s,h) = F(s,h) + R_1(s) + R_2(h) \right)$$

data fidelity term smooth regularization term with $\ell_{1,\alpha}$ (resp. $\ell_{2,\eta}$) smooth approximation of ℓ_1 -norm (resp. ℓ_2 -norm), for $(\alpha, \beta, \eta, \lambda) \in]0, +\infty[^4.$

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	000
Euclid in a Taxio	15/20			

Proposed criterion

OBSERVATION MODEL: $y = \overline{h} * \overline{s} + w$

$$\underset{s \in \mathbb{R}^{N_1}, h \in \mathbb{R}^{N_2}}{\text{minimize}} \quad (G(s, h) = F(s, h) + R_1(s) + R_2(h))$$

•
$$F(s,h) = \underbrace{\frac{1}{2} \|h * s - y\|^2}_{\mathbf{1} + \mathbf{1}} + \underbrace{\lambda \log \left(\frac{\ell_{1,\alpha}(s) + \beta}{\ell_{2,\eta}(s)}\right)}_{\mathbf{1} + \mathbf{1} + \mathbf{1}$$

data fidelity term smooth regularization term with $\ell_{1,\alpha}$ (resp. $\ell_{2,\eta}$) smooth approximation of ℓ_1 -norm (resp. ℓ_2 -norm), for $(\alpha, \beta, \eta, \lambda) \in]0, +\infty[^4$.

•
$$\ell_{1,\alpha}(s) = \sum_{n=1}^{N} \left(\sqrt{s_n^2 + \alpha^2} - \alpha \right).$$

• $\ell_{2,\eta}(s) = \sqrt{\sum_{n=1}^{N} s_n^2 + \eta^2}.$

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	000
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution				15/20

Proposed criterion

Observation model: $y = \overline{h} * \overline{s} + w$

$$\underset{s \in \mathbb{R}^{N_1}, h \in \mathbb{R}^{N_2}}{\text{minimize}} \quad (G(s, h) = F(s, h) + R_1(s) + R_2(h))$$

•
$$F(s,h) = \frac{1}{2} \frac{\|h * s - y\|^2}{|data \text{ fidelity term}} + \underbrace{\lambda \log \left(\frac{\ell_{1,\alpha}(s) + \beta}{\ell_{2,\eta}(s)}\right)}_{\text{smooth regularization term}}$$

with $\ell_{1,\alpha}$ (resp. $\ell_{2,\eta}$) smooth approximation of ℓ_1 -norm (resp. ℓ_2 -norm), for $(\alpha, \beta, \eta, \lambda) \in]0, +\infty[^4$.

•
$$R_1(s) = \iota_{[s_{\min}, s_{\max}]^{N_1}}(s)$$
, with $(s_{\min}, s_{\max}) \in]0, +\infty[^2$.

• $R_2(h) = \iota_{\mathcal{C}}(h)$, with $\mathcal{C} = \{h \in [h_{\min}, h_{\max}]^{N_2} \mid ||h|| \le \delta\}$, for $(h_{\min}, h_{\max}, \delta) \in]0, +\infty[^3.$

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	000
Euclid in a Taxic	16/20			

SOOT algorithm: propositions

Convergence

Let $(s^k)_{k\in\mathbb{N}}$ and $(h^k)_{k\in\mathbb{N}}$ be sequences generated by SOOT. If:

1. There exists $(\underline{\nu},\overline{\nu})\in]0,+\infty[^2$ such that, for all $k\in\mathbb{N}$,

$$\begin{array}{ll} (\forall j \in \{0, \ldots, J_k - 1\}) & \underline{\nu} \, \mathsf{I}_N \preceq A_1(s^{k,j}, h^k) \preceq \overline{\nu} \, \mathsf{I}_N, \\ (\forall i \in \{0, \ldots, I_k - 1\}) & \underline{\nu} \, \mathsf{I}_S \preceq A_2(s^{k+1}, h^{k,i}) \preceq \overline{\nu} \, \mathsf{I}_S \end{array}$$

Step-sizes γ_ℓ for s and h are chosen in the interval [γ, 2 - γ].
 G is a semi-algebraic function.

Then $(s^k, h^k)_{k \in \mathbb{N}}$ converges to a critical point $(\widehat{s}, \widehat{h})$ of G(s, h). $(G(s^k, h^k))_{k \in \mathbb{N}}$ is a nonincreasing sequence converging to $G(\widehat{s}, \widehat{h})$.

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	000
Euclid in a Taxic	16/20			

SOOT algorithm: propositions

Construction of the quadratic majorants

For every $(s, h) \in \mathbb{R}^{N_1} imes \mathbb{R}^{N_2}$, let

$$egin{aligned} &A_1(s,h) = \left(L_1(h) + rac{9\lambda}{8\eta^2}
ight)\mathsf{I}_{N_1} + rac{\lambda}{\ell_{1,lpha}(s) + eta} A_{\ell_{1,lpha}}(s), \ &A_2(s,h) = L_2(s)\,\mathsf{I}_{N_2}, \end{aligned}$$

where

$$A_{\ell_{1,\alpha}}(s) = \operatorname{Diag}\left(\left((s_n^2 + \alpha^2)^{-1/2}\right)_{1 \le n \le N_1}\right),$$

and $L_1(h)$ (resp. $L_2(s)$) is a Lipschitz constant for $\nabla_1 \rho(\cdot, h)$ (resp. $\nabla_2 \rho(s, \cdot)$). Then, $A_1(s, h)$ (resp. $A_2(s, h)$) satisfies the majoration condition for $F(\cdot, h)$ at s (resp. $F(s, \cdot)$ at h).

Effect of the quasi-cyclic rule on convergence speed

 K_s : number of iterations on s for one iteration on h

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses	
00	00	0000000	0000	000	
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution 17/20					

Noise level (σ)				0.02	0.03
Obc	onvotion arror	$\ell_2 \ (\times 10^{-2})$	7.14	7.35	7.68
Obs		$\ell_1 \; (imes 10^{-2})$	2.85	3.44	4.09
	Krishnan et al. 2011	$\ell_2 \ (\times 10^{-2})$	1.23	1.66	1.84
Signal error		$\ell_1 \ (\times 10^{-3})$	3.79	4.69	5.30
Signal error	SOOT.	$\ell_2 \ (\times 10^{-2})$	1.09	1.63	1.83
	3001	$\ell_1 \ (imes 10^{-3})$	3.42	4.30	4.85
	Krishnan et al. 2011	$\ell_2 \ (\times 10^{-2})$	1.88	2.51	3.21
Kornolorror		$\ell_1 \ (\times 10^{-2})$	1.44	1.96	2.53
Reffiel effor	SOOT	$\ell_2 \ (\times 10^{-2})$	1.62	2.26	2.93
	3001	$\ell_1 \; (imes 10^{-2})$	1.22	1.77	2.31
	Krishnan <i>et al.</i>	, 2011	106	61	56
rine (s.)	SOOT		56	22	18

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses	
00	00	0000000	0000	000	
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution 17/20					

Sparse seismic reflectivity signal recovery

- Continuous red line: \overline{s}
- Dashed black line: \hat{s}

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses	
00	00	0000000	0000	000	
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution 17/2					

Band-pass seismic "wavelet" recovery

- Continuous red line: \overline{h}
- Dashed black line: \hat{h}

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	●OO
Euclid in a Tax	18/20			

Conclusion

- → Proposition of the SOOT algorithm based on a new BC-VMFB algorithm for minimizing the sum of
 - a nonconvex smooth function F,
 - a nonconvex non necessarily smooth function R.
- \rightsquigarrow Smooth parametric approximations to the ℓ_1/ℓ_2 norm ratio
- → Convergence results both on iterates and function values.
- → Blocks updated according to a flexible quasi-cyclic rule.
- Acceleration of the convergence thanks to the choice of matrices $(A_{j_{\ell}}(x_{\ell}))_{\ell \in \mathbb{N}}$ based on MM principle.
- \rightsquigarrow Application to sparse blind deconvolution
- ~ Results demonstrated on sparse seismic reflectivity series

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses
00	00	0000000	0000	000
Euclid in a Taxic	19/20			

Some references

E. Chouzenoux, JC. Pesquet and A. Repetti. <i>A block coordinate variable metric Forward-Backward algorithm</i> . Tech. Rep., 2013. Available on http://www.optimization-online.org/DB_HTML/2013/12/4178.html.
 E. Chouzenoux, JC. Pesquet and A. Repetti. Variable metric Forward-Backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory and Appl., vol.162, no. 1, pp. 107-132, Jul. 2014.
E. Chouzenoux, JC. Pesquet and A. Repetti. A preconditioned Forward-Backward approach with application to large-scale nonconvex spectral unmixing problems. ICASSP 2014, Florence, Italie, 4-9 May 2014.
A. Repetti, M.Q. Pham, L. Duval, E. Chouzenoux and JC. Pesquet. Euclid in a taxicab: sparse blind deconvolution with smoothed ℓ_1/ℓ_2 regularization. IEEE Signal Processing Letters, May 2015.

Motivations	Inverse problems	FB and MM tools	Seismic blind deconvolution problem	Conclusion & bonuses			
00	00	0000000	0000	000			
Euclid in a Taxicab: ℓ_1/ℓ_2 sparse blind deconvolution							

So, why Tobrouk (or Tobruk)?

A bunker named Tobruk

or a concrete $\ell_1 \subset \ell_2$ embedding