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Abstract—Unveiling meaningful geophysical information from

seismic data requires to deal with both random and structured Hydrophone Towed streamer
“noises”. As their amplitude may be greater than signals of
interest (primaries), additional prior information is especially
important in performing efficient signal separation. We address
here the problem of multiple reflections, caused by wave-field
bouncing between layers. Since only approximate models of these
phenomena are available, we propose a flexible framework for
time-varying adaptive filtering of seismic signals, using sparse
representations, based on inaccurate templates. We recast the
joint estimation of adaptive filters and primaries in a new convex
variational formulation. This approach allows us to incorporate
plausible knowledge about noise statistics, data sparsity and slow
filter variation in parsimony-promoting wavelet frames. The de-
signed primal-dual algorithm solves a constrained minimization
problem that alleviates standard regularization issues in finding
hyperparameters. The approach demonstrates significantly gab
performance in low signal-to-noise ratio conditions, both for

simulated and real field seismic data. Fig. 1. Principles of marine seismic data acquisition and waopagation.
Index Terms—Convex optimization, Parallel algorithms, Towed streamer with hydrophones. Reflections on differeygrk (primaries

. . . . with a single reflection in dotted, dashed and solid dark)giayd reverberated
Yr\llgvzgnt;?rr]:fs?(r)?qaiioﬁdaépptl';/riigteé?érifzzg);sr;?(l)r?gnal Proces- jisturbances (multiples bouncing at least twice in dotted dashed light

gray).

I. INTRODUCTION

DAPTIVE filtering techniques play a prominent partproximity operators [4] with.signal processing qpplicafsc[S]
A in signal processing. They cope with time-varying opave aIIoweq performgnce mprovements. For mstance[@],
non-stationary signals and systems. The rationale of thédlow sparsity promotion witl; and¢,, 0 < p < 1, quasi-
methods is to optimize parameters of variable filters, atingr NO'MS, respectively, via time-varying soft-thresholdigera-
to adapted cost functions working on error signals. THE'S. Improvements re§|de in convergence speed accelerati
appropriate choice of cost functions, that encode a pridtf 92ins in signal-to-noise ratios (SNRs). These develoyisne
information on the system under study, should be balanct® generally performed directly in the signal domain.
with the tractability of the adaptation. While traditionalap- ~ SParsity may additionally be present in signals. Choosing a
tive algorithms resort to least squares minimization, thépPropriate transformed domain could, when applied approp
may be sensitive to outliers, and may not directly promo@ely [8], ease the efficiency of adaptive filters [9]-{11LcE
simple filters (well-behaved, with concentrated coeffitsgn transforms include filter t_>anks [12].or redundant_wavelﬁa&].[
especially when the filter length is not well known. The usefulness of sparsity-promoting loss functions oinkhr

Certain systems, for instance transmission channelsybeh@d€ functions in structured data denoising or deconvaiutio
parsimoniously. They are modeled by sparse impulse respotisWell documented [14]-[16]. Geophysical signal procegsi
filters with a few large taps, most of the others being smdil.] is a field where dealing with sparsity, or at least energy
Several designs have thus turned toward cost functions ncentration, both in the system filter and the data domain,

moting filter sparsity [1]-[3]. Recently, developmentsiard IS especially beneficial.
The aim of seismic data analysis is to infer the subsurface
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contrasts between layers and they are affected by propagatthat several approximate templates accounting for mekipl
related distortions. A portion of the wave fields is finallyare available. As the above problem is undetermined, ad-
recorded near the surface by arrays of seismometers (gd#itienal constraints should be devised. We specify sparsit
phones or hydrophones). In marine acquisition, hydropsongnd slow-variation requirements on primaries and adaptive
are towed by kilometer-long streamers. filters. In Section Il, we analyze related works and specify
Signals of interest, named primaries, follow wave paths dbe novelty of the proposed methodology. To the authors’
picted in dotted, dashed and solid blue in Fig. 1. Although ttknowledge, the formulation of this template-based resitmma
contributions are generally considered linear, severatgyof problem in a nonstationary context, taking into accounsepi
disturbances, structured or more stochastic, affect teeaet sparsity, slow adaptive filter variation, along with coasits
information present in seismic data. Since the data regovem filters is unprecedented, especially in the field of sasmi
problem is under-determined, geophysicists have develog&ocessing. Section Il describes the transformed lineadeh
pioneering sparsity-promoting techniques. For instarat®yst, incorporating the templates with adaptive filtering. In t8ac
¢1-promoted deconvolution [18] or complex wavelet transVv, we formulate a generic variational form for the problem.
forms [19] still pervade many areas of signal processing. Section V describes the primal-dual proximal formulati®he
We address one of the most severe types of interferengesformance of the proposed method is assessed in Section
secondary reflections, named multiples, correspondingig sVI. We detail the chosen optimization criteria and provide a
mic waves bouncing between layers [20], as illustrated witbomparison with different types of frames. The methodology
red dotted and dashed lines in Fig. 1. These reverberatiandirst evaluated on a realistic synthetic data model, arall§in
share waveform and frequency contents similar to primariéssted and applied to an actual seismic data-set. Connhkisio
with longer propagation times. From the standpoint of ggoloand perspectives are drawn in Section VII. This work impsove
ical information interpretation, they often hide deepegéd upon [21] by taking into account several multiple templates
reflectors. For instance, the dashed-red multiple path mRsrt of it was briefly presented in [22], by incorporating an
possess a total travel time comparable with that of the solatiditional noise into the generic model, and by introducing
blue primary. Their separation is thus required for ac@uratlternative norms in multiple selection objective crigeiHere,
subsurface characterization. A geophysics industry st@hdthe approach is extended. In patrticular, the problem is com-
consists of model-based multiple filtering. One or several-r pletely reformulated as a constrained minimization probla
istic templates of a potential multiple are determinedlioi, order to simplify the determination of data-based paramagete
based on primary reflections identified in above layers. Fas compared with our previous regularized approach inglvi
instance, the dashed-red path may be approximately idferteyper-parameters.
from the dashed-blue, and then adaptively filtered for separ
tion from the solid-blue propagation. Their precise estiora
is beyond the scope of this work, we suppose them given by
prior seismic processing or modeling. As template modeling Primary/multiple separation is a long standing problem in
is partly inaccurate — in delay, amplitude and frequency seismic. Published solutions are weakly generic, and often
templates should be adapted in a time-varying fashion bef@mbedded in a more general processing work-flow. Levels
being subtracted from the recorded data. Resorting to @evesf prior knowledge — from the shape of the seismic source
templates and weighting them adaptively, depending on ttee partial geological information — greatly differ dependi
time and space location of seismic traces, helps when higlolly data-sets. We refer to [23], [24] for recent accounts on
complicated propagation paths occur. Increasing the numibeoad processing issues, including shortcomings of standa
of templates is a growing trend in exploration. Meanwhilé;-based methods. The latter are computationally efficiesit, y
inaccuracies in template modeling, complexity of timeyu#ag their performance decreases when traditional assumpiaiins
adaptation combined with additional stochastic distudean (primary/multiple decorrelation, weak linearity or statarity,
require additional constraints to obtain geophysicatiyred high noise levels). We focus here on recent sparsity-relate
solutions. approaches, pertaining to geophysical signal proces3ing.
We propose a methodology for primary/multiple adaptivpotentially parsimonious layering of the subsurface giitated
separation based on approximate templates. This frameworkFig. 1) suggests a modeling of primary reflection coeffi-
addresses at the same time structured reverberations andleats with generalized Gaussian or Cauchy distributi@a§, [
more stochastic part. Namely, lete {0,..., N — 1} denote having suitable parameters. The sparsity induced on seismi
the time index for the observed seismic trageacquired by a data has influenced deconvolution and multiple subtraction
given sensor. We assume, as customary in seismic, an aldiBvogressively, the non-Gaussianity of seismic traces kas b
model of contributions: emphasized, and contributed to the use of more robust norms
2 = m) 5 4 p(m) 1) [26], [27] for blind sep_aration yvith independent component
analysis (ICA) for the signal of interest. As the true natafe
The unknown signal of interest (primary, in blue) and theeismic data distribution is still debated, including itat®n-
sum of undesired, secondary reflected signals (differert marity [28], a handful of works have investigated processing
tiples, in red) are denoted, respectively, By @("))ogn<N appropriate transformed domains. They may either statiomna
ands = (§<"))09,,<N. Other unstructured contributions arg29] or strengthen data sparsity. For instance, [30] applZA
gathered in the noise terh = (b(”))0§n<N. We assume in a dip-separated domain. In [31], as well as in [32] and

II. RELATED AND PROPOSED WORK



subsequent works by the same group, a special focus is Igitst, seismic processing work-flows are neither publiclgila
on separation in the curvelet domain. able for benchmarks and are generally heavily parametrized

Aforementioned works mostly deal with the mitigation ofSecond, quality measures are not easy to devise since vi-
some/;-norm on residuals, as remnant noise is traditionalgual inspection is of paramount importance in geophysical
considered Gaussian in seismic. They are blended fyittb- data processing assessment. We thus compare the proposed
jectives, solved throughy or hybrid/;-¢, approximations [33], approach with a state-of-the-art solution, previously den
resorting for instance to iteratively re-weighted leagtares marked against industrial competitors [24].
method. Recently, [34] investigated the use of intermedigt
norms, withp = 1.2 for instance, accounting for the “super-

Gaussian nature of the seismic data due to the interfering

fields”, in the time domain. Without further insights on pssc [1l. M ODEL DESCRIPTION

modeling, a more flexible framework is desirable to adapt to

the nature of different seismic data, either in the directnor
a variety of transformed domains.

Data sparsity and noise Gaussianity alone may not
sufficient to solve (1). Additional constraints reduce theaf
solutions, hopefully to geologically sounder ones. A finsé ds P (n)
the locality of matched filters, traditional in standard tipié ?;Zl:;?jetc;g?n)?va'lab'“\tXaZﬂ Le'sgrk;llatﬁzxjéazjgéﬁg’eo;rjr;gdel
filtering. These can be modeled by Finite Impulse Respon# hali .0§”<N pl : {] :

(FIR) operators. Classical filter support limitations, dovwo through a limited support refationship:
one-tap [24], [31], assorted witfy or ¢; criteria, are standard.

We assume that multiple templates are modeled at the tem-
oral vicinity of actual disturbances, with standard gemtal
gsumptions on primaries. The multiple signal possesses a

local behavior related to the geological context. Hence, we

In other seismic processing fields, [35] has investigatecdechi J—1 p’+Pj—17(n)
¢,-1 loss functions for deconvolution. Recently, in [36], [37] 5 = Z Z h; (P)r§n—p) 2
the use of the nuclear norm is promoted for interpolation, j=0 p=p

combined with a standar-norm penalty. Yet, to the authors’

knowledge, no work in multiple removal has endeavored —(n) . L
9 b -wahereh;n) is an unknown finite impulse response (with tap

more systematic study of variational and sparsity con#sai e . . . ;
on the adaptive filters, in the line of [38]. In this work, Wecoefﬂuents) associated with templgtand timen, and where

, ‘ o I ;o
propose a formulation allowing a family of penalties to btg teh{—P]+}7...,O}I;s Its ?tsrtmg |nhde>_<1( d_tr? ctotrhresapondsd
applied to the adaptive FIR filters. Since no metric is evilyen 0 the causal case). It must be emphasized that the dependenc

more natural, such a flexibility is useful to assess differemr't' the time index: of the impulse responses implies that

objectives. For instance, one might be interested in eitladir tle f|||ter|ng_propess |st'F|me|v::1jr|ar(1jt, alt_h ou.gh It cafn be ml
preserving primaries, in mild noise cases, or robustly rengp S ov(\j/y \Illary'r.]t% In prac IC? ndeetr’I seismic 'z/vavte ortrrr:s ‘tzeo
the multiples, in high contamination situations. Indeetiew gradually with propagation deptn, 'in- contrast with Steeper

the perturbation is stronger in amplitude than the targgtad variations around contours in natural images. Templates ar

geophysicists are interested in uncovering even spoors g@nerated WiFh St?ﬂdarz g(i_o phzﬁigc al mode!{i_ng _based on tlhe
potential primaries, obfuscated by noise. As will be see%,ove primaries. fhe adaptive assumption 15 commonly
%opted, and applied in partly overlapping, complementary

e windows at different scales. The observation that sethp
iltérs are ill-behaved, due to the band-pass nature of seism
ﬁta is well known, although rarely documented, motivating
J

the most appropriate norm depends on such contexts. Kin
the propagation medium, as well as the modeled templa
carry continuous variations. With the seismic bandwidtp (
to 125 Hz), changes in signals are not as dramatic as in sh
images. Consequently, we expect the adapted filters to iexh
bounded variations from one time index to the next one.

This paper presents for the first time a relatively generic

e need for filter coefficient control. Defining vectasand
Jo<i<J by:

framework for multiple reflection filtering withiY a noise 5=[50 ... g(N—l)]T,

prior, (i) sparsity constraints on signal frame coefficients, _ —0), —©), ,

(iii ) slow variation modelling of the adaptive filters, and)( hj = {hj () - by (P + P —1) -

concentration metrics on the filters. With the development —(N-1) —(N=1) T
LT . : A (p') - hy (0 +P; —1)

of recent optimization tools, multiple constraints can now j p j J )

be handled in a convenient manner. Due to the diversity of

focus points, paired with data observation, we choose hea{ﬁd bl ; ; ; .
ock diagonal matricegR; )o<j<s Of size N x NP;:

to decouple effects and to insist oiwv)( with respect to : e )oss<s SR

different flavors of 1D wavelet bases and frames [39], [40],

which appear as natural atoms for sparse descriptions of som R§.O) 0o ... 0

physical processes, related to propagation and reflection o o RWD 0

signals through media. Rj=| . T _ ,
The evaluation of the proposed multiple filtering algorithm : 0 ' :

on seismic data is not straightforward, for two main reasons 0 0o ... Rg.Nfl)



where(R§"))U§n§N,1 are vectors of dimensioR; such that By resorting to an estimation ofy, ho,...,hs_1) in the

T sense of the MAP (Maximum A Posteriori), the problem can

E(Rgo))T(Ry))T ... (Rg.N*l))T — thus be formulated under the following variational form:
G RN () R 0 J-1
7, J inimi _ — h.
f R minimize vz —y ; Rjh;) + ¢(Fy) + p(h).
(N=D - N=2) ) B. Problem formulation
0 TJ(-N_” e Tﬁ-NﬁPjH) For simplicity, we propose to adopt uniform priors férand
(Ho,...,Hj;_1) by choosing forp and p indicator functions
(') 0 (N-1) (N—P;—p') of closed convex sets. The associated MAP estimation prob-
- [ "3 - lem then reduces to the following constrained minimization
Eqg. (2) can be expressed more concisely as problem:
J—1 L
— minimize ¥(y, h 4
5= R;h; . FyeD, heC (v h) “)

I
o

J where the data fidelity term is defined by functign (y,h) —
For more conciseness, one can wite Rh by definingR = ¢ (z —y — Rh), and the a priori information available on the
[Ro...Ry_1] € RVXQ whereQ = NP with P = Z}]:_ol P filters and the primary are expressed through hard contdrain
andh — [ET T |T e RQ modeled by nonempty closed convex sétand D. One of the
0 - J-1 . . . . .
potential advantages of such a constrained formulatiohas t

it facilitates the choice of the related parameters witlpees
to the regularized approach which was investigated in some
A. Bayesian framework of our previous works [21], [22] (this point will be detailed

We assume that the characteristics of the primary dager on). We will now turn our attention to the choice Bf
appropriately described through a prior statistical maded C and D.
(possibly redundant) frame of signals, e.g. a wavelet frame
[41]. If we denote byz the vector of frame coefficients,c considered data fidelity term and constraints
and FF € REXN designates the associated analysis operator
we have [42]:7 = Fg. In addition, we assume that is
a realization of a random vectdr, the probability density
function (pdf) of which is given by

IV. VARIATIONAL FORMULATION OF THE PROBLEM

1) Data fidelity term: Function &' accounts for the noise
statistics. In this work, the noise is assumed to be additive
zero-mean, white and Gaussian. This leads to the quadratic
form = || . ||2.

(Vy € RY)  fy(y) o exp(—@(Fy)) 3 2) A priori information onh: The filters are assumed to be
time varying. However, in order to ensure smooth variations

. RN _ i i i
where : RY — ]-00,+o0] is the associated pOtentIal’along time, we propose to introduce constraint sets

assumed to have a fast enough decay.

On the other hand, to take into account the available N
information on the unknown filter, it can be assumed that for 1 = {h €R?[V(j,p),¥n € {0, e {QJ - 1} ;
all j € {0,...,J — 1}, h; is a realization of a random vector (2n+1) (2n)
H;. LetH = RNt x ... x RNPs, The joint pdf of the filter [h;™ 7 (p) =y (p)| < Ej,p} (6)
coefficients can be expressed as:
(Vh €H)  frg...tr, 1 (1) o< exp(=p(h)), Co={n e R |V(jip) W e {1, L sz—lJ }
where (Hy,...,H;_1) is independent ofY. It is further (2m) (2n—1)
assumed that the noise vectois a realization of a random \hj (p) — h; (p)| < 5.71,1)}- (6)

vector B with pdf These constraints prevent strong variations of correspgnd

(Vb e RY) fB(b) < exp(—1(b)), coefficients of the impulse response, estimated at two con-
secutive times. The bounds, € [0,+oo[ may depend on
the shape of the expected filter. For example, its dependence
on the coefficient indey may enable a larger (resp. smaller)
difference for filter coefficients taking larger (resp. skeg|
values. Moreover, some additional a priori information can
be added directly on the vector of filter coefficieits This
amounts to defining a new convex st as a lower level

-1 set of some lower-semicontinuous convex functipn by
exp | —¢ (Z —y= thj) y W) fao,...m,_. (D). setting C; = {h e R?|p(h) <A} where A € ]0,+ocl.

J=0 p: RY — [0, 4+00[ may correspond to simple norms such as

where v : RY — ]—o0,400], and thatB is indepen-
dent of Y and Hy,...,H;_,. The posterior distribution of
(Y, Hy,...,H;_1) conditionally toZ = Y+Z‘;]:—01 R;H;+B
is then given by

(Vy € RN)(Vh € H) fy.my... 1y o 12== (Y, h) o



{1 or f£3-norms but also to more sophisticated ones such fast constraint set§’; andC; — imposing smooth variations

a mixed ¢, o-norm [43]. Hence, the convex sét is defined along time of the corresponding tap coefficients — reduce to
asC = C, N Cy N C3. From a computational standpoint (seg@rojections onto a set of hyperslabs &f as illustrated in
Section V), it is more efficient to split’ into three subsets asFig. 2.

described above.

3) A priori information on y: As mentioned in Sec-
tion IV-A, we assume that the primary signal is sparse
described through an analysis frame operdtar R¥ <V [44],
which may ease its processing, by increasing the data-com
discrepancy between primaries and multiples. The assaktia
constraint can be split by defining a partition f, ..., K}
denoted by{K, | ¢ € {1,...,L}}. For example, for wavelet
frames,£ may correspond to the number of subbands Epd
is the/-th subband. Then, one can chod3e= D x---x D,
with Dy = {(zr)rex, | Xoypek, Pe(ze) < Be}, where, for
every ¢ € {1,...,L}, By € ]0,+oc], and @, : R&Ke)
[0, +oc] is a lower-semicontinuous convex function.

V. PRIMAL -DUAL PROXIMAL ALGORITHM

Our objective is to provide a numerical solution to Probler
(4). This amounts to minimizing functio® with respect to
y and h, the latter variables being constrained to belong 1
the constraint setd and C, respectively. These contraints
are expressed through linear operators, such as a Wavgllgtz_ Projection ontay/C» of points Hi, Ha and Hj in B2,
frame analysis operatad¥. For this reason, primal-dual algo-

rithms [45]-{47], such as the Monoto_ne+L|psch|tz Forward- More precisely, the projection ont@; (the projection onto
Backward-Forwqrd (M+L FBF) alg_orlthm [48], co_nst|tutec2 yielding similar expressions) is calculated as follows: le
appropriate choices since they avoid some large-size xmafi’ "p@ 4nq letg, = I, (h); then for everyj € {0,--- ,.J —
inversions inherent to other schemes such as the ones p[bp(ﬁ N Ay n 1) ’andn {0, 2] a 1},

in [49], [50]. As mentioned in Section IV-CY is a quadratic ~' = (;n+1; (2m) k2 '
function and its gradient is thus Lipschitzian, which aoiv 1) if [7; (p) = hy"" (p)] < €jp, then

to be directly handled in the M+L FBF algorithm. In order (2n) (2n)

to deal with the contraints, projections onto the closed/ern 951 (p) = hy™"(p),
sets(Cyn)1<m<s and D are performed (these projections are
described in more details in the next section).

2n+1 2n+1
9V (p) = K (p);

2) if h§-2n+1)(p) - h§-2n) (p) > €jp, then

hEY () + ) ()

- N . ) () = _Sip
A. Gradient and projection computation 9j1 \P 2 9
From the assump_tion_of addi_tive zero-mean (_Bausgiqn noise, (2n+1)( - h§,2n+1)(p) + hj(?”) (p) N Eip
we deduce thatl is differentiable with ay-Lipschitzian 9j1 p)= 2 '
gradient, i.e.(V {h} € RNFQ)(v {h] € RN1TQ): 3) if h;-2"+1)(p) _ hf”) (p) < —;.5, then
, ’ (2n+1) (2n)
Y y Y Y n R (p) + 0T (p) ey
v o) - ve( o] <u ] - 4] o) = LD W s
2n+1 2n
and g(_2n+1)(p) _ hg " )(p) + h§ )(p) _ Ejp
VU =2[I R]"([I R]- —2). 51 2 2

Cj3 introduces a priori information on the filter vectér

The gradient of¥ is thus u-Lipschitzian with : ) o .
through the lower-semicontinuous convex functipn This

p="2||[I R]|? (7) function can be chosen separable wj.te {0,...,J — 1}
where||| - || denotes the spectral norm. Note that the proposlendthe sense that
method could be applied to other functionghan a quadratic _ =1
one, provided that they are Lipschitz differentiable. p(h) = Z pj(h;)-
j=0

Now, we turn our attention to the constraint sétsand D.
C models the constraints we set on the filtersvhich are split This term can be seen as a concentration measure for the
into 3 terms (see Section IV-C). We thus have to project onfitter tap amplitude. Subsequently, we consider three plessi
each set,, with m € {1, 2, 3}. The projections onto the two choices forp;:



1) ¢;-norm: Algorithm 1 Primal-dual algo. M+LFBF to solve (4)

N—1p'+P;j—1 Let 1l € [e, 15¢]
~ n [0]
Pithy) = lhlle, = D= >~ 11" )l Let {y[oJ] e RN+Q 0l ¢ RK, (uﬁo
n=0 p=p’ h me{1,2,3}

3 [0l K 0 K
This choice requires to perform projections onto an (RQ? s3’ €RT, wi” €R
¢,-ball. This can be achieved by using the iterative ©F ¢=0,1,... do
procedure proposed in [51], which yields the projection ~ Gradient computation

. . . . 1] [4] ) [4] Fopld]
S _ Y i Yy [
in a finite numb.er of iterations. t[l"]] = {hm] — Al (V\IJ( [h["]} ) + [23 u“]D
2) squared/s-norm: 1 ] : m=1Um
[r]OJectlon computation
N—1p'+P;—1 iyl
. n zy =Ly
pithy) = InillE, = > > )P for {=1:£ do |
"0 p=p (' m), = (o10k) +51ai k)
. . . . . keK, keK,

In this case, the projection is straightforward. . ’ . (5 ()

. . (3 _ 7 _ 7 keEKy

3) mixed/; >-norm: (w1 (k))kem = (82 (M)kew 71lp, <W1 ")
R (n) v ?nd o 1:3d
~ — . _ n)( \[2 or m=1:3do
pilh) = Ihslles = 3- (30 VWP | S et
n=0 p=p M .
i i i tam

Then, we can use an algorithm similar to [51] computing wg,]m = t[QZ,]m — 4, ( MO >
the projection onto ar; ball. end for

Finally, as mentioned earlier in Section IV-C, the prior A\(eragin?

information on the primary is expressed through the frame :c[;] = st]

analysis operatof’ by splitting the constraint into individual for {=1:Ldo _ 4

subband constraints. In order to promote sparsity of thé coe (qgl](k))keK = (wgl](k) +7mx[§] (k))
£

ficients, the potential function employed for theh subband . . - Rl
: _ [i+1] — () — Sl [4]
with ¢ € {1,...,£} can be chosen equal , = | - |. For (IR e, = (U (k) = s (k) + o1 (k))kem
computing the resulting projectiolip, onto an/;-ball, we end for
can again employ the iterative procedure proposed in [51]. for m=1:3do _
[l 4 ligld]
T T g

B. M+LFBF algorithm Um = um — 3, T 4o,

end for

The primal-dual approach chosen to solve the minimization Update
problem (4) is detailed in Algorithm 1. It alternates the [i+1] yli 4 Sl Pyl
computations of the gradient df, and of the projections onto Lh[iJrl] = {h[i]] —~li (V\IJ(L[}-] D + [ s ;g] D
(Cm)i<m<s and (De)i<e<c. end for R

The choice of the step size is crucial for the convergence
speed and it has to be chosen carefully. First, the norm ¢f eac
linear operator involved in the criterion or at least an uppe Vi
bound of it must be available. In our case, we have:

N RIN < I+ Bl +--- + IRy ®) e consider either synthetic or real data for our evaluation
where ||R;[| = max,cqo,.. n-1} ||R§-n)|\ for every j € The first ones are.evaluated both qualitatively and quantita
{0,...,J — 1}. Secondly, the step size! at each iteration tively, and the choice for the sparsity norm for the wavelet
i must be chosen so as to satisfy the following rule;date COefficients is discussed. Realistic synthetic data araiéd

the Lipschitz constant defined in (7), l6t= .+ /][ F[[2 + 3 from a modeled seismic trace.with primarigsTwo muItipIe.
and lete €]0, %[, thenyll € e, 156]' IIF||? can be easily tgmplates_l = 2) ro andr, are mdependgntly convolved W.Ith.
evaluated. Indeed, in the case of a tight frame, it is equiine-varying filters and summed up to yield a known, reajsti
to the frame constant and, otherwise, it can be computed $}pthetic secondary reflection signalThe primaries are then
an iterative approach [52, Algorithm 4]. It is important tg°OTupted bys and an additive Gaussian noise. Théh time-
emphasize that the convergence of this algorithm to an @ptinYarying filter is built upon averaging filters with length;,
solution to Problem (4) is guaranteed by [48, Theorem 4.8lch thatVp € {p/,...,p" + P; — 1}, hﬁ»n)(p) = nj(.”)/Pj

In practice, the higher the norms df and (R;)o<j<s—1, (cf. EQ. (2)). The time-varying filters are thus unambigupus
the slower the convergence of the algorithm. In order wefined, at a given time:, by the constantsb(."). Uniform
circumvent this difficulty, one can resort to a precondiéidn filters are chosen for their poor frequency selectivity ivédra
version of the algorithm [53]. However, this was not found tand notches in the frequency domain. Such artifacts for
be useful in our experiments. instance happen in marine seismic acquisition.

. RESULTS
A. Evaluation methodology




B. Qualitative results on simulated data

We choose here two filter families with lengttiy = 10 -——4/3
and P, = 14. The two filters evolve complementally in time, —m3)2
emulating a bi-modal multiple mixture at two different dept
They are combined with the two templates in a multiple sign
depicted in red at the fifth row from the top of Fig. 3. Date
and template were designed in order to mimic the time ai
frequency contents of seismic signals. This figure alsoaysp
the other signals of interest, known and unknown, when
0.08. We aim at recovering weak primary signals, potentiall
hidden under both multiple and random perturbations, fro
the observed signat in black at the last row. We focus on ,
the rightmost part of the plots, between indices 350 and 7( ’.;" .
The primary events we are interested in are located in Fig. 27 |IH| | |,|“ S

I I

(first signal on top) between indices 400-500 and 540-6C %

respectively. These primary events are mixed with muléiple

.and .random noise. A_ close-L_lp on '.ndlces 350-700 is prOV'O_'EB. 4.  Generalized Gaussian modeling of seismic data wavedete

in Fig. 6. The first interesting primary event (400-500) igecomposition with different power laws.

mainly affected by the random noise component. It serves as

a witness for the quality of signal/random noise separatsn

it is relatively insulated. The second one is disturbed bthbodata. Thus, we obtain a first set of solutions, here sepagratin

noise and a multiple signal, relatively higher in amplitidan primaries and multiples. Approximate constraints, reggliin

the first primary event. Consequently, its recovery seyereahe proposed method, are then computed (in a relatively fast

probes the efficiency of the proposed algorithm. manner) on approximate versions of unknown clean signals.
Such a procedure yields coarse bound estimates, upon which

- - - - the proposed algorithm is run. Although approximate, they a
g™ expected to be easier to estimate than regularization hyper
G s parameters. We hereafter use a fast first-pass separation of
O N signals using [24]. Finallyp is chosen as thé, »-norm.

Tin) N
5 A|p—r
§m Vip—
20 |
0 200 400 600 800 1000 7
Fig. 3. Considered simulated seismic signals with noise levet 0.08. . . .
From top to bottom: primary (unknowny, estimatedy, first templaterg, 350 235 525 610 2700

second template;, multiple (unknown)s, estimateds, and observed signal
z.

For the proposed method, we choose the following initial ' ' N A
settings. An undecimated wavelet frame transform with 8- “‘/\/\/\f
length Symmlet filters is performed ah= 4 resolution levels. |
The loss functionsy and (p,)1<¢<c in (4) are chosen as
v =|.]> and @, = |.|. The latter is based on a selection
of power laws (namely, 1, 4/3, 3/2, 2, 3, and 4) for which
closed-form proximal operators exist [54, p. 1356]. Thetbes . . .
matching power for the chosen wavelet tight frame yields the 350 435 525 610 700
taxicab metric or/;-norm, as illustrated in Fig. 4. i ) . )

. . ig. 5. Close-up witho = 0.01 andp is the /1 2-norm; top: input data

The constraint€’; andC> are chosen according to (5) an({solid), primaryg (dashed); bottom: output separated primargdash-doted)
(6), with 1, = 0.1 andez;, = 0.07 for everyp. The bounds and primaryy (solid).
of the constraints are calculated empirically on ideal aign
For real signals, we propose to infer those constants frévarot Fig. 5 and Fig. 6 provides close-ups of delimited areas with
methods. In practice, alternative cruder filtering or restion weak primaries. With a low noise level (Fig. 5), the multiple
algorithms indeed exist, with the same purpose. They oftecho at indices 500 to 550 is faithfully removed, as well as
are less involved and accurate, and potentially fastery Thilae random noise. The first strong primary (indices 400-450)
are run for instance on a small subset of representative resalwell recovered. The second one has its first four periods




We first exemplify results in the leftmost part of Table |
(Haar wavelet), for the first two rows. For th&-norm,
l ‘b we observe a primary restoration improvement 22 dB
AL o ) N bk ] ll A l\‘ | Ao L L “ (21.3—19.1 dB, with standard deviations 0f16 dB for frames
‘ ‘ and 0.26 dB for bases) for 3 wavelet levels. For 4 levels, we
l obtain1.2 dB with standard deviations ©f18 dB and0.22 dB.
. . . Intuitively, the SNR improvement appears to be significant,
350 435 525 610 700 relatively to the dispersion. We shall detail this aspeterla
on. Yet, such a sensible variation of abdautB, with only one
further wavelet decomposition level, further justifies treed

\/\\/\/\ﬁ for the given multi-parameter analysis.

' In most cases, for frames, the best results are obtainediwith

W 530 565 600 levels. When this is not the case, the difference in perfomman
v

V4 generally lies within the dispersion. This assertion cénno
be stated with bases, possibly due to shift variance effects
The frame-based SNR for primaries is always greater, or
equal to that of the basis one, putting statistical signiftea
aside for the moment. Namely, looking at summary statistics
Fig. 6. Close-up withy = 0.08 and p is the 1 2-norm; top: input data the minimum, median, mean and maximum improvements
(solid), primaryg (dashed); bottom: output separated primrgdash-doted) for frames over bases at@5dB, 1.8dB, 2dB and 4.2dB
and primaryj (solid). respectively. Looking at numbers in bold, we see that a frame
with the ¢4 loss function is the clear winner in absolute SNR,
for every wavelet choice and noise level.

The results for multiple estimation, given in Table I, are

d the incoh t noise is drasticallv reduced. Althouiih more contrasted. Frames and bases yield more similar perfor
and the inconerent noise 1S drastically reduced. oug W mance, especially for high Gaussian noise levels. The best

a _notlc_eable am_plltulfje d'Stomog azd S?rr;edrlnglgg ?Mh toverall results (bold) are given b# » (high noise) and/,-
primaries are visually recovered. As stated in Sectionhig norms (low noise).

ability to restore — albeit imperfectly — spurs of strongly Average differences allow the observation of global trends
hidden primaries (cf. Fig. 6, between indices 540 and 600) Il g g

f tint tf - loration i (il ¥ practice, consistent results, taking into account SN& di
of paramount interest for seismic exploration in greatet persion, are more important. Assuming denoised realizstio

o ) follow a Gaussian distribution, we now study the difference

C. Quantitative results on simulated data Gaussian pdf between frame and basis results. Its mean is

These first qualitative simulation results are complengéntg,, = uy — up and its variances? , is o7 + a]%. Ta-
with more extensive tests on different settings of waveléte Il reports the normalized difference significance ide
choices, levels, redundancy and adaptive filter normsmé li t¢,, = ps/5/04s, reminiscent of the Student's test. It is
the risk of unique parameter set bias effects. We test thragsociated with the probability,, that, in an outcome of
different dyadic wavelets (Haar, Daubechies and Symmlit withe realizations, the basis SNR is superior to the frame SNR.
filter length 8), either in orthogonal basis or shift-ingani tight The Haar wavelet{;-norm, primary restoration improvement
frame mode, with 3 or 4 decomposition levels, consisterth witf 1y, = 2.2dB yields o;/,, = 0.30. Hence,t;,, = 7.2.
seismic data bandwidth. These data decomposition setilegsThe interpretation of this significance is illustrated witte
tested again for four noise levels and three different @wicabacus in Figure 7, withr;,, associated to the shaded area.
of concentration metrics for the adaptive filters. For eade deem the difference in distribution between bases and
choice in this parameter set, 100 different noisy realiweti frames significant only ifit;,,| > 1. When significant, the
are processed. Each of these experiments is representedndgx is emphasized in italics or bold, the latter denoting
its empirical average and standard deviation. As we hatlee most significant among the three concentration measures
seen before, the restoration of primaries or the cancetiaif ~Since the minimum, median, mean and maximum indiges
multiples could be jointly pursued. We thus report in Talllesare 1.3, 3.4, 3.5 and 7.7, we consider the improvement of
and |l the average SNR, for the clean modeled primary afidmes over bases significant for all the tested parameters f
multiple, with respect to their restored counterpart, eesp primaries (Table llI-left). Interestingly, whereas tlig-norm
tively. Column headers and f denote basis and frame resultgjives the best average gain, the, and the¢;-norms yield
whose averages are loosely denoted:pyand ;. To improve sensibly more significance at lower noises. Choosing/the
reading, numbers in bold (for Table Il as well) indicate tlest or ¢;-norm is consequently more interesting in practice, as we
result for a given decomposition levél. Numbers in italics desire more consistent results under unknown noise \@miti
denote the best SNRs obtained, irrespective of the numlierobserved signals. At higher noise levels, the normalized
of wavelet levels. The standard deviation tables are coedbindifference indext;, (between values 3 and 4) is very close
with Tables | and Il in Table Ill as a “significance index” offor all parameters and wavelets. Thus, the significance ef th
the outcome. different filter concentration measures is not fundaméntal

350 435 525 610 700

matched correctly. More interesting is the stronger no@me ¢
dition in Fig. 6. The multiple signal is still correctly remed



proposed in [24]. It is based on adaptive filtering on sliding
windows in a complex continuous wavelet domain. The chosen
complex Morlet wavelet is very efficient at concentrating
seismic data energy. One-tap Wiener-like (unary) complex
filters are adaptively estimated in overlapping windowsetak

in the complex scalogram, i.e. the complex-valued, diszdf
continuous wavelet transform. This algorithm was succiigsf
tested against industry standards. It is quantitativedyefa but

it does not permit the introduction of prior knowledge on
signal sparsity or filter regularity. Fig. 8 presents sytithe
2D seismic data, constructed similarly to the previous 1D
traces in Section VI-B, with a high noise levet & 0.08).
Vertical traces are stacked laterally to form a 2D imagentro
left to right, the synthetic traces drift away from the sdism
source. The bended hyperbolas correspond to primaries. The
flatter one, below, mimics a multiple event. Herlg, = 6,

. . . . . . . P, = 6, and constraintg®; and Cy are chosen according to

2L { (14) and (15), where; , = 0.1 ande2, = 0.1 for every p.
trpp=2 — Apparently, better primary preservation is obtained whke t
1k / \ 1 proposed method, for a very simple synthetic data set. This
/ phenomenon is observed at the crossing between primaries
o L— . N ; ; and multiples. The proposed method also effectively gets ri
14 16 18 20 22 24 26 of more incoherent noise.

E. Comparative evaluation: real data

The previous simulated example is a little bit simplistic.
lypp=4 We finally compare our algorithm with [24] on a portion
/\ of a real seismic data set. Recorded and multiple template
\ data belong to the same marine seismic survey processed
/ \ , , in [24]. The recorded seismic data is displayed in Fig. 9-
14 16 18 20 27 2% 26 (a). The main objective is to uncover a potential primary,
masked by strong multiple events that mostly contribute to
Fig. 7. Significance index abacus with different “significarlevels” (and the gbserved total seismic signal energy. The primary agpea
probabilty /5, shaded): 0.5 (0.17). 1 (0.14), 2 (0.05) and 4 (0.0013). partially as a wiggling, horizontal stripes in the bottontpzt
the figure, on the right side. Geologically speaking, it dtdou
be re-linked with the left side of the picture, to one of the
Pcfmmed sloping stripes. By looking at differences betwéen t

different. Based on the previous observations, the choice

{1 or ¢1-norms would yield more consistent results in al . L
ci’:ées ! y recorded data and the multiple template in Fig. 9-(b), theetr

The rightmost and lower part of Table Il concerns th8]c the flat primary may appear more obvious. Templates are
.Hbtained by different involved seismic modeling techngue
whose details [55] are beyond the scope of the paper. The core

ractice, we notice that most;,, values vary between -1 ) ; i ) e :
P b0 y f adaptive multiple removal techniques in seismic datdsboi

and 1. This indicates that bases and frames perform similag - : .
since there is no significant performance difference. Th own to locally adapt the patterns in Fig. 9-(b) in location

phenomenon can be explained by the fact that frames or baggg, amp“tUde to the data in Fig. 9-(a). Once adapted, the
through the wavelet transform sparsity prior, impact pries approximate patterns may be subtracted from the observed

rather than multiples. In few cases though, we observe vat lgignal, with the hope of unveiling previously hidden signal

. L ; .The efficiency of a seismic data processing algorithm is
noise levels, some significance in frame outcomes over basis.
. . ifficult to assess, due to the absence of ground truth. One of
results, obtained by th& , and¢;-norms again.

Globally, the restoration of both primaries and multipletisnhe challenges of present seismic data processing resides |

benefits from the choice of a Daubechies or Symmlet wave £ ability to identify deepe_r target. Tq t.h.'s am, enhgrsm
. L : (fata sets or broadband seismic acquisitions are being ssddre
frame. The best performance — in terms of statistical sign

: : : . by geophysical signal processing. Fig. 10 thus comparesethe
;?ﬁgreaixvg:f;eddh?ghiear:z'géﬁgn;|onmg andfy,,-n0rMS, - s obtained with [24] and the proposed algorithm. Aliiou

the random noise is apparently highly heteroskedastidy bot
. ] . methods are able to successfully retrieve the weak primary
D. Comparative evaluation: synthetic data below the multiple level, especially of the left side of the
In addition to the above objective and subjective results, viigure. The method in [24] may suffer from a little more pre-
perform a comparative evaluation with the empirical altjori echo above the primary in the top-left corner of Fig. 10-(a),
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mear(SNR, )
Haar Daubechies Symmlet
o [4) [2) 012 [4) D U1 2 5] [ l12
o |[L] b f b f b f b f b f b f b f b f b f
0.01] 3[19.1{21.3]20.2|21.9]18.9]/21.3]20.9(| 21.8] 21.1]| 22.3]| 20.1| 21.8] 19.9(| 21.8| 21.4|22.5|19.2| 21.9
4120.6]/21.8[21.6]22.4]20.3]21.8[20.8[22.0| 22.1] 22.7| 21.1] 22.1| 20.3] 22.0| 22.3|22.8[20.4|22.1
0.02] 3[19.2[20.3]20.1]21.1] 18.6]20.1] 20.6| 21.3[ 21.2| 22.1] 20.4| 21.2] 20.1| 21.5] 21.4]22.3]19.5[ 21.3
47119.8]20.8[20.5[21.3|19.5/20.6/20.1|21.6| 21.0] 22.2| 20.0| 215/ 20.0| 21.6| 21.5[22.4[19.2|21.6
0.04] 3[16.5[18.2]16.9/18.5[/16.2 18.0] 18.0{ 20.1] 18.3| 20.6] 17.9] 19.9] 17.9[ 20.2] 18.4]20.8|17.6] 20.0
4116.7]18.5[16.9]18.8| 16.5] 18.3] 18.0{ 20.2| 18.3] 20.7| 17.7] 20.0| 17.9] 20.3| 18.21| 20.7| 17.5[ 20.1
0.08] 3|12.3[14.7|12.5|14.9/12.2| 14.6| 14.3| 17.4| 14.4| 17.7| 14.2| 17.3| 14.1| 17.6| 14.3|17.9|14.0[ 17.5
4112.4]15.0{12.5[152|12.3|14.9|14.2|17.5|14.4|17.7| 14.1[17.3| 13.9]17.5] 14.0 [17.7[ 13.2| 17.3
TABLE |
SNR,AVERAGED OVER 100 NOISE REALIZATIONS FOR THE ESTIMATIONS ORy.
mear{SNR;)
Haar Daubechies Symmlet
D [4] [ l1,2 [4] 2 l1,2 [4] [ U1 2
o |[L] b f b f b f b f b f b f b f b f b f
0.01] 3| 26.3|27.0| 27.4| 28.4|26.2| 28.0| 27.6| 28.0| 28.2| 28.3| 26.9| 28.0{ 26.7| 28.0| 27.9| 28.4] 26.5| 28.0
4127.6]28.3[28.4] 28.7 | 27.4[ 28.4] 27.6] 28.1| 28,6 | 28.5[27.7[28.1| 27.1] 28.1| 28.5[28.6 | 27.1] 28.2
0.02| 3| 25.3|25.6| 25.7| 25.7 | 25.0| 25.5| 25.8 | 25.5| 25.8| 25.6| 25.8 | 25.5| 25.3| 25.5| 25.8 25.6{ 25.1| 25.5
4125.8]/25.7|26.0[25.8 | 25.7| 25.8] 25.5[ 25.6] 25.7| 25.6 | 25.5[ 25.6 | 25.3] 25.6( 25.9 [ 25.6| 25.3] 25.6
0.04] 3[22.1[22.1]21.8] 21.8[22.2]22.3[22.3] 22.1| 20.1] 21.8| 225 22.3[ 22.1] 22.1] 21.8 21.8[ 22.2| 22.3
4122.3]22.2[21.9] 21.8|22.4(22.3]22.2]22.1|21.8|21.8[22.4[22.2|21.2| 22.1| 21.8[21.8| 22.2| 22.3
0.08/ 3|18.4|18.4|17.7| 17.8|18.6/18.6|18.5| 18.4|17.8/ 17.8| 18.7 | 18.6| 18.4| 18.4| 17.8| 17.8| 18.6| 18.6
4118.4]18.4|17.8] 17.8|18.6|18.6] 18.5[/18.4| 17.8| 17.7| 18.7] 18.6| 18.4] 18.4| 17.8[ 17.8| 18.6] 18.6

TABLE I
SNR,AVERAGED OVER 100 NOISE REALIZATIONS FOR THE ESTIMATIONS OFs.

L4,y for primaries tsp for multiples

Haar Daubechies Symmlet Haar Daubechies Symmlet

1 O [ b b [ bbbl [l bl ]l |l ]|l
F/01 /b F/61 /0| F/6]F/6 | F/6]F/61 F/b ] F/01F/01 F/b1F/01F/0] 7761770 7 /b6] /b
73|43|77(26|30(49|56|26(72|27|32|75|13[/03|35|53|15]|6.0
42128|51[42[19(33|53[13[51[29[11|42|25]|-02[/16[44[0.1|44
30{27|34|15(21|16(28|21(31|0.7/00|16|-1.1{-0.8/-09|05|-0.5] 1.5
6]23[25[30[29[27|30[17]43]-01]-0.6] 0.1]0.3[-0.3]0.2]0.8[-0.7] 1.2
34[35[32[30[39[27[32]38[32[0.0[0.0]01]-06]4.7[-06[-0.2]-0.1] 0.1
35(37(33|32|38|28[33[3.7]|33[-03/-0.1]/-0.2{-0.3[-0.1|-0.3|2.6-0.1| 0.1
35(35|35(35(39|33(38|42(37|00|00|0.1|-0.2/0.0(-0.1/-0.1/0.0| 0.0
38(38[37|34[36[32|38[41|42|00[00[0.0(-01/0.0[-0.2[-0.1/0.0[ 0.0

TABLE Il
NORMALIZED DIFFERENCE SIGNIFICANCE INDEX

0.01

0.02

0.04

0.08

B W] A W] N Wl D w D
N
o

while a remnant-45° shadow affects the proximal multipleproximal framework permits different strategies for spars
removal in its central part of Fig. 10-(b). modeling, additive noise removal, and adaptive filter desig
The increased robustness to noisier seismic data is estimainder appropriate regularity and amplitude coefficientceon
with a wide-band Gaussian noise, added to the seismic fidldtion constraints. The proposed approach is evaluated on
data. The outcome is illustrated in Fig. 11. While the primarseismic data using different orthogonal wavelet basesightl t
can still be tracked with [24] in Fig. 11-(a), it dims insideet frames, and various sparsity measures for wavelet coeftiie
ambient noise on the left-most side. The proposed templafbe standard sparsity-profig-norm is usefully complemented
based multiple filtering is more robust to noise, reflectitsy iby alternative concentration measures, such{asor ¢ »-
practical potential. Naturally, the anisotropic, oriehteature norms, which seem better suited to adaptive filter design. It
of seismic data, and the directional diversity of primar@sl performance is interesting for instance in recovering weak
multiples, suggests an extension to oriented frames in twignals buried under both strong random and structurednois
dimensions. Provided appropriate templates are obtained, this streattu
pattern filtering algorithm could be useful in other appiica
VIl. CONCLUSIONS areas, e.g. acoustic echo-cancellation in sound and sps@ch

We have proposed a generic methodology to impose Spargﬁ;trqctiye testing where transmitted waves may rebqgnd at
and regularity properties through constrained adaptiteriflg Material interfaces (e.g. ultrasounds), or pattern magtn
in a transformed domain. This method exploits side inform&?ages. In our future work, two-dlmen5|onal dlrectlonallmq
tion from approximate disturbance templates. The employ£gcale approaches [44] may provide sparser represemsatio
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(a) (b)

(©) (d)

(e) ®

Fig. 8. Data composed by three everds=£ 0.08), one primary and two multiples, SNR 1.71dB (a); multiples composed by two estimated events (b);
output separated primaries with [24], SNR3.11 dB (c) and our method, SNR 16.77 dB (d); output adapted multiples with [24], SNR 3.1dB (e) and
our method, SNR= 15.44 dB (f).

for seismic data. Second, sparsity priors could be enfoored and corrections that improved the manuscript.
multiple signals as well, with a need for more automation in

optimal choices on loss functions in the proximal formwati

potentially by using other measures thén[56]-[58]. The

Bayesian framework provided in this work could also serve to

develop other statistical approaches for multiple remoza.

by using Markov Chain Monte-Carlo methods.
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(b) (b)
Fig. 9. Portion of a common receiver gather: (a) recorded seidiatia with ~ Fig. 10. Subtraction results, low field-noise case: prinsa(@parated from
a partially appearing primary (b) multiple wavefield template. multiples) with (a) [24] (b) with the proposed method.
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