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Abstract—Unveiling meaningful geophysical information from
seismic data requires to deal with both random and structured
“noises”. As their amplitude may be greater than signals of
interest (primaries), additional prior information is especially
important in performing efficient signal separation. We address
here the problem of multiple reflections, caused by wave-field
bouncing between layers. Since only approximate models of these
phenomena are available, we propose a flexible framework for
time-varying adaptive filtering of seismic signals, using sparse
representations, based on inaccurate templates. We recast the
joint estimation of adaptive filters and primaries in a new convex
variational formulation. This approach allows us to incorporate
plausible knowledge about noise statistics, data sparsity and slow
filter variation in parsimony-promoting wavelet frames. The de-
signed primal-dual algorithm solves a constrained minimization
problem that alleviates standard regularization issues in finding
hyperparameters. The approach demonstrates significantly good
performance in low signal-to-noise ratio conditions, both for
simulated and real field seismic data.

Index Terms—Convex optimization, Parallel algorithms,
Wavelet transforms, Adaptive filters, Geophysical signal process-
ing, Signal restoration, Sparsity, Signal separation.

I. I NTRODUCTION

A DAPTIVE filtering techniques play a prominent part
in signal processing. They cope with time-varying or

non-stationary signals and systems. The rationale of these
methods is to optimize parameters of variable filters, according
to adapted cost functions working on error signals. The
appropriate choice of cost functions, that encode a priori
information on the system under study, should be balanced
with the tractability of the adaptation. While traditional adap-
tive algorithms resort to least squares minimization, they
may be sensitive to outliers, and may not directly promote
simple filters (well-behaved, with concentrated coefficients),
especially when the filter length is not well known.

Certain systems, for instance transmission channels, behave
parsimoniously. They are modeled by sparse impulse response
filters with a few large taps, most of the others being small.
Several designs have thus turned toward cost functions pro-
moting filter sparsity [1]–[3]. Recently, developments around
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Fig. 1. Principles of marine seismic data acquisition and wavepropagation.
Towed streamer with hydrophones. Reflections on different layers (primaries
with a single reflection in dotted, dashed and solid dark gray), and reverberated
disturbances (multiples bouncing at least twice in dotted and dashed light
gray).

proximity operators [4] with signal processing applications [5]
have allowed performance improvements. For instance, [6],[7]
allow sparsity promotion withℓ1 and ℓp, 0 < p < 1, quasi-
norms, respectively, via time-varying soft-thresholdingopera-
tors. Improvements reside in convergence speed acceleration
or gains in signal-to-noise ratios (SNRs). These developments
are generally performed directly in the signal domain.

Sparsity may additionally be present in signals. Choosing an
appropriate transformed domain could, when applied appropri-
ately [8], ease the efficiency of adaptive filters [9]–[11]. Such
transforms include filter banks [12] or redundant wavelets [13].
The usefulness of sparsity-promoting loss functions or shrink-
age functions in structured data denoising or deconvolution
is well documented [14]–[16]. Geophysical signal processing
[17] is a field where dealing with sparsity, or at least energy
concentration, both in the system filter and the data domain,
is especially beneficial.

The aim of seismic data analysis is to infer the subsurface
structure from seismic wave fields recorded through land or
marine acquisitions. In reflection seismology, seismic waves,
generated by a close-to-impulsive source, propagate through
the subsurface medium. They travel downwards, then upwards,
reflected by geological interfaces, convolved by earth filters.
They account for the unknown relative distances and velocity
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contrasts between layers and they are affected by propagation-
related distortions. A portion of the wave fields is finally
recorded near the surface by arrays of seismometers (geo-
phones or hydrophones). In marine acquisition, hydrophones
are towed by kilometer-long streamers.

Signals of interest, named primaries, follow wave paths de-
picted in dotted, dashed and solid blue in Fig. 1. Although the
contributions are generally considered linear, several types of
disturbances, structured or more stochastic, affect the relevant
information present in seismic data. Since the data recovery
problem is under-determined, geophysicists have developed
pioneering sparsity-promoting techniques. For instance,robust,
ℓ1-promoted deconvolution [18] or complex wavelet trans-
forms [19] still pervade many areas of signal processing.

We address one of the most severe types of interferences:
secondary reflections, named multiples, corresponding to seis-
mic waves bouncing between layers [20], as illustrated with
red dotted and dashed lines in Fig. 1. These reverberations
share waveform and frequency contents similar to primaries,
with longer propagation times. From the standpoint of geolog-
ical information interpretation, they often hide deeper target
reflectors. For instance, the dashed-red multiple path may
possess a total travel time comparable with that of the solid-
blue primary. Their separation is thus required for accurate
subsurface characterization. A geophysics industry standard
consists of model-based multiple filtering. One or several real-
istic templates of a potential multiple are determined off-line,
based on primary reflections identified in above layers. For
instance, the dashed-red path may be approximately inferred
from the dashed-blue, and then adaptively filtered for separa-
tion from the solid-blue propagation. Their precise estimation
is beyond the scope of this work, we suppose them given by
prior seismic processing or modeling. As template modeling
is partly inaccurate — in delay, amplitude and frequency —
templates should be adapted in a time-varying fashion before
being subtracted from the recorded data. Resorting to several
templates and weighting them adaptively, depending on the
time and space location of seismic traces, helps when highly
complicated propagation paths occur. Increasing the number
of templates is a growing trend in exploration. Meanwhile,
inaccuracies in template modeling, complexity of time-varying
adaptation combined with additional stochastic disturbances
require additional constraints to obtain geophysically-sound
solutions.

We propose a methodology for primary/multiple adaptive
separation based on approximate templates. This framework
addresses at the same time structured reverberations and a
more stochastic part. Namely, letn ∈ {0, . . . , N − 1} denote
the time index for the observed seismic tracez, acquired by a
given sensor. We assume, as customary in seismic, an additive
model of contributions:

z(n) = y(n) + s(n) + b(n) . (1)

The unknown signal of interest (primary, in blue) and the
sum of undesired, secondary reflected signals (different mul-
tiples, in red) are denoted, respectively, byy = (y(n))0≤n<N

and s = (s(n))0≤n<N . Other unstructured contributions are
gathered in the noise termb = (b(n))0≤n<N . We assume

that several approximate templates accounting for multiples
are available. As the above problem is undetermined, ad-
ditional constraints should be devised. We specify sparsity
and slow-variation requirements on primaries and adaptive
filters. In Section II, we analyze related works and specify
the novelty of the proposed methodology. To the authors’
knowledge, the formulation of this template-based restoration
problem in a nonstationary context, taking into account noise,
sparsity, slow adaptive filter variation, along with constraints
on filters is unprecedented, especially in the field of seismic
processing. Section III describes the transformed linear model
incorporating the templates with adaptive filtering. In Section
IV, we formulate a generic variational form for the problem.
Section V describes the primal-dual proximal formulation.The
performance of the proposed method is assessed in Section
VI. We detail the chosen optimization criteria and provide a
comparison with different types of frames. The methodology
is first evaluated on a realistic synthetic data model, and finally
tested and applied to an actual seismic data-set. Conclusions
and perspectives are drawn in Section VII. This work improves
upon [21] by taking into account several multiple templates.
Part of it was briefly presented in [22], by incorporating an
additional noise into the generic model, and by introducing
alternative norms in multiple selection objective criteria. Here,
the approach is extended. In particular, the problem is com-
pletely reformulated as a constrained minimization problem, in
order to simplify the determination of data-based parameters,
as compared with our previous regularized approach involving
hyper-parameters.

II. RELATED AND PROPOSED WORK

Primary/multiple separation is a long standing problem in
seismic. Published solutions are weakly generic, and often
embedded in a more general processing work-flow. Levels
of prior knowledge — from the shape of the seismic source
to partial geological information — greatly differ depending
on data-sets. We refer to [23], [24] for recent accounts on
broad processing issues, including shortcomings of standard
ℓ2-based methods. The latter are computationally efficient, yet
their performance decreases when traditional assumptionsfail
(primary/multiple decorrelation, weak linearity or stationarity,
high noise levels). We focus here on recent sparsity-related
approaches, pertaining to geophysical signal processing.The
potentially parsimonious layering of the subsurface (illustrated
in Fig. 1) suggests a modeling of primary reflection coeffi-
cients with generalized Gaussian or Cauchy distributions [25],
having suitable parameters. The sparsity induced on seismic
data has influenced deconvolution and multiple subtraction.
Progressively, the non-Gaussianity of seismic traces has been
emphasized, and contributed to the use of more robust norms
[26], [27] for blind separation with independent component
analysis (ICA) for the signal of interest. As the true natureof
seismic data distribution is still debated, including its station-
arity [28], a handful of works have investigated processingin
appropriate transformed domains. They may either stationarize
[29] or strengthen data sparsity. For instance, [30] applies ICA
in a dip-separated domain. In [31], as well as in [32] and
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subsequent works by the same group, a special focus is laid
on separation in the curvelet domain.

Aforementioned works mostly deal with the mitigation of
someℓ2-norm on residuals, as remnant noise is traditionally
considered Gaussian in seismic. They are blended withℓ0 ob-
jectives, solved throughℓ1 or hybridℓ1-ℓ2 approximations [33],
resorting for instance to iteratively re-weighted least-squares
method. Recently, [34] investigated the use of intermediate ℓp-
norms, withp = 1.2 for instance, accounting for the “super-
Gaussian nature of the seismic data due to the interfering
fields”, in the time domain. Without further insights on precise
modeling, a more flexible framework is desirable to adapt to
the nature of different seismic data, either in the direct orin
a variety of transformed domains.

Data sparsity and noise Gaussianity alone may not be
sufficient to solve (1). Additional constraints reduce the set of
solutions, hopefully to geologically sounder ones. A first one is
the locality of matched filters, traditional in standard multiple
filtering. These can be modeled by Finite Impulse Response
(FIR) operators. Classical filter support limitations, down to
one-tap [24], [31], assorted withℓ2 or ℓ1 criteria, are standard.
In other seismic processing fields, [35] has investigated mixed
ℓp-ℓ1 loss functions for deconvolution. Recently, in [36], [37]
the use of the nuclear norm is promoted for interpolation,
combined with a standardℓ2-norm penalty. Yet, to the authors’
knowledge, no work in multiple removal has endeavored a
more systematic study of variational and sparsity constraints
on the adaptive filters, in the line of [38]. In this work, we
propose a formulation allowing a family of penalties to be
applied to the adaptive FIR filters. Since no metric is evidently
more natural, such a flexibility is useful to assess different
objectives. For instance, one might be interested in eitherwell-
preserving primaries, in mild noise cases, or robustly removing
the multiples, in high contamination situations. Indeed, when
the perturbation is stronger in amplitude than the target signal,
geophysicists are interested in uncovering even spoors of
potential primaries, obfuscated by noise. As will be seen,
the most appropriate norm depends on such contexts. Finally,
the propagation medium, as well as the modeled templates,
carry continuous variations. With the seismic bandwidth (up
to 125Hz), changes in signals are not as dramatic as in sharp
images. Consequently, we expect the adapted filters to exhibit
bounded variations from one time index to the next one.

This paper presents for the first time a relatively generic
framework for multiple reflection filtering with (i) a noise
prior, (ii ) sparsity constraints on signal frame coefficients,
(iii ) slow variation modelling of the adaptive filters, and (iv)
concentration metrics on the filters. With the development
of recent optimization tools, multiple constraints can now
be handled in a convenient manner. Due to the diversity of
focus points, paired with data observation, we choose here
to decouple effects and to insist on (iv), with respect to
different flavors of 1D wavelet bases and frames [39], [40],
which appear as natural atoms for sparse descriptions of some
physical processes, related to propagation and reflection of
signals through media.

The evaluation of the proposed multiple filtering algorithm
on seismic data is not straightforward, for two main reasons.

First, seismic processing work-flows are neither publicly avail-
able for benchmarks and are generally heavily parametrized.
Second, quality measures are not easy to devise since vi-
sual inspection is of paramount importance in geophysical
data processing assessment. We thus compare the proposed
approach with a state-of-the-art solution, previously bench-
marked against industrial competitors [24].

III. M ODEL DESCRIPTION

We assume that multiple templates are modeled at the tem-
poral vicinity of actual disturbances, with standard geophysical
assumptions on primaries. The multiple signal possesses a
local behavior related to the geological context. Hence, we
assume the availability ofJ templates(r(n)j )0≤n<N,0≤j<J ,
related to(s(n))0≤n<N via a possibly non-causal linear model
through a limited support relationship:

s(n) =

J−1∑

j=0

p′+Pj−1∑

p=p′

h
(n)

j (p)r
(n−p)
j (2)

whereh
(n)

j is an unknown finite impulse response (withPj tap
coefficients) associated with templatej and timen, and where
p′ ∈ {−Pj+1, . . . , 0} is its starting index (p′ = 0 corresponds
to the causal case). It must be emphasized that the dependence
w.r.t. the time indexn of the impulse responses implies that
the filtering process is time variant, although it can be assumed
slowly varying in practice. Indeed, seismic waveforms evolve
gradually with propagation depth, in contrast with steeper
variations around contours in natural images. Templates are
generated with standard geophysical modeling based on the
above primaries. The adaptive FIR assumption is commonly
adopted, and applied in partly overlapping, complementary
time windows at different scales. The observation that adapted
filters are ill-behaved, due to the band-pass nature of seismic
data is well known, although rarely documented, motivating
the need for filter coefficient control. Defining vectorss and
(hj)0≤j<J by:

s =
[
s(0) · · · s(N−1)

]⊤
,

hj =
[
h
(0)

j (p′) · · · h
(0)

j (p′ + Pj − 1) · · ·

· · · h
(N−1)

j (p′) · · · h
(N−1)

j (p′ + Pj − 1)
]⊤

,

and block diagonal matrices(Rj)0≤j<J of sizeN ×NPj :

Rj =




R
(0)
j 0 . . . 0

0 R
(1)
j . . . 0

... 0
. ..

...

0 0 . . . R
(N−1)
j



,
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where(R(n)
j )0≤n≤N−1 are vectors of dimensionPj such that

[
(R

(0)
j )⊤(R

(1)
j )⊤ · · · (R

(N−1)
j )⊤

]⊤
=




r
(−p′)
j · · · r

(0)
j 0 · · · 0

r
(−p′+1)
j · · · r

(0)
j 0 · · · 0

...

r
(N−1)
j r

(N−2)
j · · · r

(N−Pj)

j

0 r
(N−1)
j · · · r

(N−Pj+1)

j

...

0 · · · 0 r
(N−1)
j · · · r

(N−Pj−p′)

j




.

Eq. (2) can be expressed more concisely as

s =

J−1∑

j=0

Rjhj .

For more conciseness, one can writes = Rh by definingR =
[R0 . . . RJ−1] ∈ R

N×Q whereQ = NP with P =
∑J−1

j=0 Pj

andh = [h
⊤

0 . . . h
⊤

J−1]
⊤ ∈ R

Q.

IV. VARIATIONAL FORMULATION OF THE PROBLEM

A. Bayesian framework

We assume that the characteristics of the primary are
appropriately described through a prior statistical modelin a
(possibly redundant) frame of signals, e.g. a wavelet frame
[41]. If we denote byx the vector of frame coefficients,
and F ∈ R

K×N designates the associated analysis operator,
we have [42]:x = Fy. In addition, we assume thaty is
a realization of a random vectorY , the probability density
function (pdf) of which is given by

(∀y ∈ R
N ) fY (y) ∝ exp(−ϕ(Fy)) (3)

where ϕ : RN → ]−∞,+∞] is the associated potential,
assumed to have a fast enough decay.

On the other hand, to take into account the available
information on the unknown filter, it can be assumed that for
all j ∈ {0, . . . , J − 1}, hj is a realization of a random vector
Hj . Let H = R

NP1 × · · · × R
NPJ . The joint pdf of the filter

coefficients can be expressed as:

(∀h ∈ H) fH0,...,HJ−1
(h) ∝ exp(−ρ(h)),

where (H0, . . . , HJ−1) is independent ofY . It is further
assumed that the noise vectorb is a realization of a random
vectorB with pdf

(∀b ∈ R
N ) fB(b) ∝ exp(−ψ(b)),

where ψ : R
N → ]−∞,+∞], and thatB is indepen-

dent of Y and H0, . . . , HJ−1. The posterior distribution of
(Y,H0, . . . , HJ−1) conditionally toZ = Y +

∑J−1
j=0 RjHj+B

is then given by

(∀y ∈ R
N )(∀h ∈ H)fY,H0,...,HJ−1|Z=z(y, h) ∝

exp


−ψ

(
z − y −

J−1∑

j=0

Rjhj

)

 fY (y)fH0,...,HJ−1

(h).

By resorting to an estimation of(y, h0, . . . , hJ−1) in the
sense of the MAP (Maximum A Posteriori), the problem can
thus be formulated under the following variational form:

minimize
y∈RN , h∈H

ψ(z − y −

J−1∑

j=0

Rjhj) + ϕ(Fy) + ρ(h).

B. Problem formulation

For simplicity, we propose to adopt uniform priors forY and
(H0, . . . , HJ−1) by choosing forϕ andρ indicator functions
of closed convex sets. The associated MAP estimation prob-
lem then reduces to the following constrained minimization
problem:

minimize
Fy∈D,h∈C

Ψ(y,h) (4)

where the data fidelity term is defined by functionΨ: (y,h) 7→
ψ(z − y −Rh), and the a priori information available on the
filters and the primary are expressed through hard constraints
modeled by nonempty closed convex setsC andD. One of the
potential advantages of such a constrained formulation is that
it facilitates the choice of the related parameters with respect
to the regularized approach which was investigated in some
of our previous works [21], [22] (this point will be detailed
later on). We will now turn our attention to the choice ofΨ,
C andD.

C. Considered data fidelity term and constraints

1) Data fidelity term: FunctionΨ accounts for the noise
statistics. In this work, the noise is assumed to be additive,
zero-mean, white and Gaussian. This leads to the quadratic
form ψ = ‖ . ‖2.

2) A priori information onh: The filters are assumed to be
time varying. However, in order to ensure smooth variations
along time, we propose to introduce constraint sets

C1 =
{
h ∈ R

Q | ∀(j, p), ∀n ∈

{
0, . . . ,

⌊
N

2

⌋
− 1

}
,

|h
(2n+1)
j (p)− h

(2n)
j (p)| ≤ εj,p

}
(5)

C2 =
{
h ∈ R

Q | ∀(j, p), ∀n ∈

{
1, . . . ,

⌊
N − 1

2

⌋}
,

|h
(2n)
j (p)− h

(2n−1)
j (p)| ≤ εj,p

}
. (6)

These constraints prevent strong variations of corresponding
coefficients of the impulse response, estimated at two con-
secutive times. The boundsεj,p ∈ [0,+∞[ may depend on
the shape of the expected filter. For example, its dependence
on the coefficient indexp may enable a larger (resp. smaller)
difference for filter coefficients taking larger (resp. smaller)
values. Moreover, some additional a priori information can
be added directly on the vector of filter coefficientsh. This
amounts to defining a new convex setC3 as a lower level
set of some lower-semicontinuous convex functionρ̃, by
setting C3 =

{
h ∈ R

Q | ρ̃(h) ≤ λ
}

where λ ∈ ]0,+∞[.
ρ̃ : RQ → [0,+∞[ may correspond to simple norms such as
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ℓ1 or ℓ2-norms but also to more sophisticated ones such as
a mixed ℓ1,2-norm [43]. Hence, the convex setC is defined
asC = C1 ∩ C2 ∩ C3. From a computational standpoint (see
Section V), it is more efficient to splitC into three subsets as
described above.

3) A priori information on y: As mentioned in Sec-
tion IV-A, we assume that the primary signal is sparsely
described through an analysis frame operatorF ∈ R

K×N [44],
which may ease its processing, by increasing the data-domain
discrepancy between primaries and multiples. The associated
constraint can be split by defining a partition of{1, . . . ,K}
denoted by{Kℓ | ℓ ∈ {1, . . . ,L}}. For example, for wavelet
frames,L may correspond to the number of subbands andKℓ

is theℓ-th subband. Then, one can chooseD = D1×· · ·×DL

with Dℓ = {(xk)k∈Kℓ
|
∑

k∈Kℓ
ϕ̃ℓ(xk) ≤ βℓ}, where, for

every ℓ ∈ {1, . . . ,L}, βℓ ∈ ]0,+∞[, and ϕ̃ℓ : Rcard(Kℓ) →
[0,+∞[ is a lower-semicontinuous convex function.

V. PRIMAL -DUAL PROXIMAL ALGORITHM

Our objective is to provide a numerical solution to Problem
(4). This amounts to minimizing functionΨ with respect to
y and h, the latter variables being constrained to belong to
the constraint setsD and C, respectively. These contraints
are expressed through linear operators, such as a wavelet
frame analysis operatorF . For this reason, primal-dual algo-
rithms [45]–[47], such as the Monotone+Lipschitz Forward-
Backward-Forward (M+L FBF) algorithm [48], constitute
appropriate choices since they avoid some large-size matrix
inversions inherent to other schemes such as the ones proposed
in [49], [50]. As mentioned in Section IV-C1,Ψ is a quadratic
function and its gradient is thus Lipschitzian, which allows it
to be directly handled in the M+L FBF algorithm. In order
to deal with the contraints, projections onto the closed convex
sets(Cm)1≤m≤3 andD are performed (these projections are
described in more details in the next section).

A. Gradient and projection computation

From the assumption of additive zero-mean Gaussian noise,
we deduce thatΨ is differentiable with aµ-Lipschitzian

gradient, i.e.(∀

[
y
h

]
∈ RN+Q)(∀

[
y

′

h
′

]
∈ RN+Q):

‖∇Ψ
([

y
h

])
−∇Ψ

([
y

′

h
′

])
‖ ≤ µ‖

[
y
h

]
−

[
y

′

h
′

]
‖

and
∇Ψ = 2[I R]⊤([I R] · −z).

The gradient ofΨ is thusµ-Lipschitzian with

µ = 2|||[I R]|||2 (7)

where||| · ||| denotes the spectral norm. Note that the proposed
method could be applied to other functionsψ than a quadratic
one, provided that they are Lipschitz differentiable.

Now, we turn our attention to the constraint setsC andD.
C models the constraints we set on the filtersh, which are split
into 3 terms (see Section IV-C). We thus have to project onto
each setCm with m ∈ {1, 2, 3}. The projections onto the two

first constraint setsC1 andC2 — imposing smooth variations
along time of the corresponding tap coefficients — reduce to
projections onto a set of hyperslabs ofR

2 as illustrated in
Fig. 2.

H3

H1

πH1

πH1

h
(n
+
1)

j

(p
)−

h
(n
)

j

(p
)−

ε j,
p
=
0

h
(n
+
1)

j

(p
)−

h
(n
)

j

(p
) +

ε j,
p
=
0

h
(n)
j (p)

h
(n

+
1
)

j
(p
)

H2≡
πH2

Fig. 2. Projection ontoC1/C2 of pointsH1, H2 andH3 in R
2.

More precisely, the projection ontoC1 (the projection onto
C2 yielding similar expressions) is calculated as follows: let
h ∈ R

Q and letg1 = ΠC1
(h); then for everyj ∈ {0, · · · , J−

1}, p ∈ {p′, · · · , p′ + P − 1} andn ∈
{
0, . . . ,

⌊
N
2

⌋
− 1

}
,

1) if |h(2n+1)
j (p)− h

(2n)
j (p)| < εj,p, then

g
(2n)
j,1 (p) = h

(2n)
j (p), g

(2n+1)
j,1 (p) = h

(2n+1)
j (p);

2) if h(2n+1)
j (p)− h

(2n)
j (p) > εj,p, then

g
(2n)
j,1 (p) =

h
(2n+1)
j (p) + h

(2n)
j (p)

2
−
εj,p
2

g
(2n+1)
j,1 (p) =

h
(2n+1)
j (p) + h

(2n)
j (p)

2
+
εj,p
2

;

3) if h(2n+1)
j (p)− h

(2n)
j (p) < −εj,p, then

g
(2n)
j,1 (p) =

h
(2n+1)
j (p) + h

(2n)
j (p)

2
+
εj,p
2

g
(2n+1)
j,1 (p) =

h
(2n+1)
j (p) + h

(2n)
j (p)

2
−
εj,p
2
.

C3 introduces a priori information on the filter vectorh
through the lower-semicontinuous convex functionρ̃. This
function can be chosen separable w.r.t.j ∈ {0, . . . , J − 1}
in the sense that

ρ̃(h) =
J−1∑

j=0

ρ̃j(hj).

This term can be seen as a concentration measure for the
filter tap amplitude. Subsequently, we consider three possible
choices forρ̃j :
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1) ℓ1-norm:

ρ̃j(hj) = ‖hj‖ℓ1 =

N−1∑

n=0

p′+Pj−1∑

p=p′

|h
(n)
j (p)|.

This choice requires to perform projections onto an
ℓ1-ball. This can be achieved by using the iterative
procedure proposed in [51], which yields the projection
in a finite number of iterations.

2) squaredℓ2-norm:

ρ̃j(hj) = ‖hj‖
2
ℓ2 =

N−1∑

n=0

p′+Pj−1∑

p=p′

|h
(n)
j (p)|2.

In this case, the projection is straightforward.
3) mixed ℓ1,2-norm:

ρ̃j(hj) = ‖hj‖ℓ1,2 =
N−1∑

n=0




p′+Pj−1∑

p=p′

|h
(n)
j (p)|2




1/2

.

Then, we can use an algorithm similar to [51] computing
the projection onto anℓ1 ball.

Finally, as mentioned earlier in Section IV-C, the prior
information on the primaryy is expressed through the frame
analysis operatorF by splitting the constraint into individual
subband constraints. In order to promote sparsity of the coef-
ficients, the potential function employed for theℓ-th subband
with ℓ ∈ {1, . . . ,L} can be chosen equal tõϕℓ = | · |. For
computing the resulting projectionΠDℓ

onto anℓ1-ball, we
can again employ the iterative procedure proposed in [51].

B. M+LFBF algorithm

The primal-dual approach chosen to solve the minimization
problem (4) is detailed in Algorithm 1. It alternates the
computations of the gradient ofΨ, and of the projections onto
(Cm)1≤m≤3 and (Dℓ)1≤ℓ≤L.

The choice of the step size is crucial for the convergence
speed and it has to be chosen carefully. First, the norm of each
linear operator involved in the criterion or at least an upper
bound of it must be available. In our case, we have:

|||[I R]||| ≤
√

1 + |||R0|||2 + · · ·+ |||RJ−1|||2 (8)

where |||Rj ||| = maxn∈{0,...,N−1} ‖R
(n)
j ‖ for every j ∈

{0, . . . , J − 1}. Secondly, the step sizeγ[i] at each iteration
i must be chosen so as to satisfy the following rule: letµ be
the Lipschitz constant defined in (7), letβ = µ+

√
|||F |||2 + 3

and letǫ ∈]0, 1
β+1 [, thenγ[i] ∈ [ǫ, 1−ǫ

β ]. |||F |||2 can be easily
evaluated. Indeed, in the case of a tight frame, it is equal
to the frame constant and, otherwise, it can be computed by
an iterative approach [52, Algorithm 4]. It is important to
emphasize that the convergence of this algorithm to an optimal
solution to Problem (4) is guaranteed by [48, Theorem 4.2].
In practice, the higher the norms ofF and (Rj)0≤j≤J−1,
the slower the convergence of the algorithm. In order to
circumvent this difficulty, one can resort to a preconditioned
version of the algorithm [53]. However, this was not found to
be useful in our experiments.

Algorithm 1 Primal-dual algo. M+LFBF to solve (4)

Let γ[i] ∈ [ǫ, 1−ǫ
β ]

Let

[
y[0]

h[0]

]
∈ R

N+Q, v[0] ∈ R
K ,

(
u
[0]
m

)

m∈{1,2,3}
∈

(RQ)3 s
[0]
2 ∈ R

K , w
[0]
1 ∈ R

K

for i = 0, 1, . . . do
Gradient computation
[

s
[i]
1

t
[i]
1

]

=

[

y[i]

h
[i]

]

− γ[i]

(

∇Ψ
(

[

y[i]

h
[i]

]

)

+

[

F ∗v[i]
∑3

m=1 u
[i]
m

])

Projection computation
x
[i]
1 = Fy[i]

for ℓ = 1 : L do(
s
[i]
2 (k)

)

k∈Kℓ

=
(
v[i](k) + γ[i]x

[i]
1 (k)

)

k∈Kℓ

(

w
[i]
1 (k)

)

k∈Kℓ

=
(

s
[i]
2 (k)

)

k∈Kℓ

−γ[i]ΠDℓ

((

s
[i]
2 (k)

)

k∈Kℓ

γ[i]

)

end for
for m = 1 : 3 do
t
[i]
2,m = u

[i]
m + γ[i]h[i]

w
[i]
2,m = t

[i]
2,m − γ[i]ΠCm

(
t
[i]
2,m

γ[i]

)

end for
Averaging
x
[i]
2 = Fs

[i]
1

for ℓ = 1 : L do(
q
[i]
1 (k)

)

k∈Kℓ

=
(
w

[i]
1 (k) + γ[i]x

[i]
2 (k)

)

k∈Kℓ(
v[i+1](k)

)
k∈Kℓ

=
(
v[i](k)− s

[i]
2 (k) + q

[i]
1 (k)

)

k∈Kℓ

end for
for m = 1 : 3 do
q
[i]
2,m = w

[i]
2,m + γ[i]t

[i]
1

u
[i+1]
m = u

[i]
m − t

[i]
2,m + q

[i]
2,m

end for
Update[
y[i+1]

h[i+1]

]
=

[
y[i]

h[i]

]
−γ[i]

(
∇Ψ

([
s
[i]
1

t
[i]
1

])
+

[
F∗w

[i]
1

∑3
m=1 w

[i]
2,m

])

end for

VI. RESULTS

A. Evaluation methodology

We consider either synthetic or real data for our evaluations.
The first ones are evaluated both qualitatively and quantita-
tively, and the choice for the sparsity norm for the wavelet
coefficients is discussed. Realistic synthetic data are obtained
from a modeled seismic trace with primariesy. Two multiple
templates (J = 2) r0 andr1 are independently convolved with
time-varying filters and summed up to yield a known, realistic,
synthetic secondary reflection signals. The primaries are then
corrupted bys and an additive Gaussian noise. Thej-th time-
varying filter is built upon averaging filters with lengthPj ,

such that,∀p ∈ {p′, . . . , p′ + Pj − 1}, h
(n)

j (p) = η
(n)
j /Pj

(cf. Eq. (2)). The time-varying filters are thus unambiguously
defined, at a given timen, by the constantsη(n)j . Uniform
filters are chosen for their poor frequency selectivity behavior
and notches in the frequency domain. Such artifacts for
instance happen in marine seismic acquisition.
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B. Qualitative results on simulated data

We choose here two filter families with lengthsP0 = 10
andP1 = 14. The two filters evolve complementally in time,
emulating a bi-modal multiple mixture at two different depths.
They are combined with the two templates in a multiple signal
depicted in red at the fifth row from the top of Fig. 3. Data
and template were designed in order to mimic the time and
frequency contents of seismic signals. This figure also displays
the other signals of interest, known and unknown, whenσ =
0.08. We aim at recovering weak primary signals, potentially
hidden under both multiple and random perturbations, from
the observed signalz in black at the last row. We focus on
the rightmost part of the plots, between indices 350 and 700.
The primary events we are interested in are located in Fig. 3
(first signal on top) between indices 400-500 and 540-600,
respectively. These primary events are mixed with multiples
and random noise. A close-up on indices 350-700 is provided
in Fig. 6. The first interesting primary event (400-500) is
mainly affected by the random noise component. It serves as
a witness for the quality of signal/random noise separation, as
it is relatively insulated. The second one is disturbed by both
noise and a multiple signal, relatively higher in amplitudethan
the first primary event. Consequently, its recovery severely
probes the efficiency of the proposed algorithm.

0 200 400 600 800 1000

ȳ(n)

ŷ(n)

r
(n)
1

r
(n)
2

s̄(n)

ŝ(n)

z(n)

Fig. 3. Considered simulated seismic signals with noise levelσ = 0.08.
From top to bottom: primary (unknown)̄y, estimatedŷ, first templater0,
second templater1, multiple (unknown)s̄, estimated̂s, and observed signal
z.

For the proposed method, we choose the following initial
settings. An undecimated wavelet frame transform with 8-
length Symmlet filters is performed onL = 4 resolution levels.
The loss functionsψ and (ϕ̃ℓ)1≤ℓ≤L in (4) are chosen as
ψ = ‖ . ‖2 and ϕ̃ℓ = | . |. The latter is based on a selection
of power laws (namely, 1, 4/3, 3/2, 2, 3, and 4) for which
closed-form proximal operators exist [54, p. 1356]. The best
matching power for the chosen wavelet tight frame yields the
taxicab metric orℓ1-norm, as illustrated in Fig. 4.

The constraintsC1 andC2 are chosen according to (5) and
(6), with ε1,p = 0.1 andε2,p = 0.07 for everyp. The bounds
of the constraints are calculated empirically on ideal signals.
For real signals, we propose to infer those constants from other
methods. In practice, alternative cruder filtering or restoration
algorithms indeed exist, with the same purpose. They often
are less involved and accurate, and potentially faster. They
are run for instance on a small subset of representative real

 

 

1

4/3

3/2

2

3

4

Fig. 4. Generalized Gaussian modeling of seismic data waveletframe
decomposition with different power laws.

data. Thus, we obtain a first set of solutions, here separating
primaries and multiples. Approximate constraints, required in
the proposed method, are then computed (in a relatively fast
manner) on approximate versions of unknown clean signals.
Such a procedure yields coarse bound estimates, upon which
the proposed algorithm is run. Although approximate, they are
expected to be easier to estimate than regularization hyper-
parameters. We hereafter use a fast first-pass separation of
signals using [24]. Finally,̃ρ is chosen as theℓ1,2-norm.

350 435 525 610 700

350 435 525 610 700

530 565 600

Fig. 5. Close-up withσ = 0.01 and ρ̃ is the ℓ1,2-norm; top: input dataz
(solid), primaryȳ (dashed); bottom: output separated primaryŷ (dash-doted)
and primaryȳ (solid).

Fig. 5 and Fig. 6 provides close-ups of delimited areas with
weak primaries. With a low noise level (Fig. 5), the multiple
echo at indices 500 to 550 is faithfully removed, as well as
the random noise. The first strong primary (indices 400-450)
is well recovered. The second one has its first four periods
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350 435 525 610 700

350 435 525 610 700

530 565 600

Fig. 6. Close-up withσ = 0.08 and ρ̃ is the ℓ1,2-norm; top: input dataz
(solid), primaryȳ (dashed); bottom: output separated primaryŷ (dash-doted)
and primaryȳ (solid).

matched correctly. More interesting is the stronger noise con-
dition in Fig. 6. The multiple signal is still correctly removed
and the incoherent noise is drastically reduced. Although with
a noticeable amplitude distortion and some ringing effect,both
primaries are visually recovered. As stated in Section II, the
ability to restore — albeit imperfectly — spurs of strongly
hidden primaries (cf. Fig. 6, between indices 540 and 600) is
of paramount interest for seismic exploration in greater depths.

C. Quantitative results on simulated data

These first qualitative simulation results are complemented
with more extensive tests on different settings of wavelet
choices, levels, redundancy and adaptive filter norms, to limit
the risk of unique parameter set bias effects. We test three
different dyadic wavelets (Haar, Daubechies and Symmlet with
filter length 8), either in orthogonal basis or shift-invariant tight
frame mode, with 3 or 4 decomposition levels, consistent with
seismic data bandwidth. These data decomposition settingsare
tested again for four noise levels and three different choices
of concentration metrics for the adaptive filters. For each
choice in this parameter set, 100 different noisy realizations
are processed. Each of these experiments is represented by
its empirical average and standard deviation. As we have
seen before, the restoration of primaries or the cancellation of
multiples could be jointly pursued. We thus report in TablesI
and II the average SNR, for the clean modeled primary and
multiple, with respect to their restored counterpart, respec-
tively. Column headersb andf denote basis and frame results,
whose averages are loosely denoted byµb andµf . To improve
reading, numbers in bold (for Table II as well) indicate the best
result for a given decomposition levelL. Numbers in italics
denote the best SNRs obtained, irrespective of the number
of wavelet levels. The standard deviation tables are combined
with Tables I and II in Table III as a “significance index” of
the outcome.

We first exemplify results in the leftmost part of Table I
(Haar wavelet), for the first two rows. For theℓ1-norm,
we observe a primary restoration improvement of2.2 dB
(21.3−19.1 dB, with standard deviations of0.16 dB for frames
and 0.26 dB for bases) for 3 wavelet levels. For 4 levels, we
obtain1.2 dB with standard deviations of0.18 dB and0.22 dB.
Intuitively, the SNR improvement appears to be significant,
relatively to the dispersion. We shall detail this aspect later
on. Yet, such a sensible variation of about1dB, with only one
further wavelet decomposition level, further justifies theneed
for the given multi-parameter analysis.

In most cases, for frames, the best results are obtained with4
levels. When this is not the case, the difference in performance
generally lies within the dispersion. This assertion cannot
be stated with bases, possibly due to shift variance effects.
The frame-based SNR for primaries is always greater, or
equal to that of the basis one, putting statistical significance
aside for the moment. Namely, looking at summary statistics,
the minimum, median, mean and maximum improvements
for frames over bases are0.5 dB, 1.8 dB, 2dB and 4.2 dB
respectively. Looking at numbers in bold, we see that a frame
with the ℓ2 loss function is the clear winner in absolute SNR,
for every wavelet choice and noise level.

The results for multiple estimation, given in Table II, are
more contrasted. Frames and bases yield more similar perfor-
mance, especially for high Gaussian noise levels. The best
overall results (bold) are given byℓ1,2 (high noise) andℓ2-
norms (low noise).

Average differences allow the observation of global trends.
In practice, consistent results, taking into account SNR dis-
persion, are more important. Assuming denoised realizations
follow a Gaussian distribution, we now study the difference
Gaussian pdf between frame and basis results. Its mean is
µf/b = µf − µb and its varianceσ2

f/b is σ2
b + σ2

f . Ta-
ble III reports the normalized difference significance index
tf/b = µf/b/σf/b, reminiscent of the Student’s test. It is
associated with the probabilityπf/b that, in an outcome of
the realizations, the basis SNR is superior to the frame SNR.
The Haar wavelet,ℓ1-norm, primary restoration improvement
of µf/b = 2.2 dB yields σf/b = 0.30. Hence,tf/b = 7.2.
The interpretation of this significance is illustrated withthe
abacus in Figure 7, withπf/b associated to the shaded area.
We deem the difference in distribution between bases and
frames significant only if|tf/b| > 1. When significant, the
index is emphasized in italics or bold, the latter denoting
the most significant among the three concentration measures.
Since the minimum, median, mean and maximum indicestf/b
are 1.3, 3.4, 3.5 and 7.7, we consider the improvement of
frames over bases significant for all the tested parameters for
primaries (Table III-left). Interestingly, whereas theℓ2-norm
gives the best average gain, theℓ1,2 and theℓ1-norms yield
sensibly more significance at lower noises. Choosing theℓ1,2
or ℓ1-norm is consequently more interesting in practice, as we
desire more consistent results under unknown noise variations
in observed signals. At higher noise levels, the normalized
difference indextf/b (between values 3 and 4) is very close
for all parameters and wavelets. Thus, the significance of the
different filter concentration measures is not fundamentally
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14 16 18 20 22 24 26

0

1

2
tf /b = 0.5

14 16 18 20 22 24 26

0

1

2
tf /b = 1

14 16 18 20 22 24 26

0

1

2
tf /b = 2

14 16 18 20 22 24 26

0

1

2
tf /b = 4

Fig. 7. Significance index abacus with different “significance levels” (and
probabilityπf/b, shaded): 0.5 (0.17), 1 (0.14), 2 (0.05) and 4 (0.0013).

different. Based on the previous observations, the choice of
ℓ1,2 or ℓ1-norms would yield more consistent results in all
cases.

The rightmost and lower part of Table III concerns the
restoration of multiples. Although of weaker importance in
practice, we notice that mosttf/b values vary between -1
and 1. This indicates that bases and frames perform similarly,
since there is no significant performance difference. This
phenomenon can be explained by the fact that frames or bases,
through the wavelet transform sparsity prior, impact primaries
rather than multiples. In few cases though, we observe, at low
noise levels, some significance in frame outcomes over basis
results, obtained by theℓ1,2 and ℓ1-norms again.

Globally, the restoration of both primaries and multiples
benefits from the choice of a Daubechies or Symmlet wavelet
frame. The best performance — in terms of statistical signif-
icance — is offered by sparsity-promotingℓ1 andℓ1,2-norms,
either at lower and higher noise level.

D. Comparative evaluation: synthetic data

In addition to the above objective and subjective results, we
perform a comparative evaluation with the empirical algorithm

proposed in [24]. It is based on adaptive filtering on sliding
windows in a complex continuous wavelet domain. The chosen
complex Morlet wavelet is very efficient at concentrating
seismic data energy. One-tap Wiener-like (unary) complex
filters are adaptively estimated in overlapping windows taken
in the complex scalogram, i.e. the complex-valued, discretized,
continuous wavelet transform. This algorithm was successfully
tested against industry standards. It is quantitatively faster, but
it does not permit the introduction of prior knowledge on
signal sparsity or filter regularity. Fig. 8 presents synthetic
2D seismic data, constructed similarly to the previous 1D
traces in Section VI-B, with a high noise level (σ = 0.08).
Vertical traces are stacked laterally to form a 2D image. From
left to right, the synthetic traces drift away from the seismic
source. The bended hyperbolas correspond to primaries. The
flatter one, below, mimics a multiple event. Here,P0 = 6,
P1 = 6, and constraintsC1 andC2 are chosen according to
(14) and (15), whereε1,p = 0.1 and ε2,p = 0.1 for every p.
Apparently, better primary preservation is obtained with the
proposed method, for a very simple synthetic data set. This
phenomenon is observed at the crossing between primaries
and multiples. The proposed method also effectively gets rid
of more incoherent noise.

E. Comparative evaluation: real data

The previous simulated example is a little bit simplistic.
We finally compare our algorithm with [24] on a portion
of a real seismic data set. Recorded and multiple template
data belong to the same marine seismic survey processed
in [24]. The recorded seismic data is displayed in Fig. 9-
(a). The main objective is to uncover a potential primary,
masked by strong multiple events that mostly contribute to
the observed total seismic signal energy. The primary appears
partially as a wiggling, horizontal stripes in the bottom part of
the figure, on the right side. Geologically speaking, it should
be re-linked with the left side of the picture, to one of the
dimmed sloping stripes. By looking at differences between the
recorded data and the multiple template in Fig. 9-(b), the trace
of the flat primary may appear more obvious. Templates are
obtained by different involved seismic modeling techniques,
whose details [55] are beyond the scope of the paper. The core
of adaptive multiple removal techniques in seismic data boils
down to locally adapt the patterns in Fig. 9-(b) in location
and amplitude to the data in Fig. 9-(a). Once adapted, the
approximate patterns may be subtracted from the observed
signal, with the hope of unveiling previously hidden signals.

The efficiency of a seismic data processing algorithm is
difficult to assess, due to the absence of ground truth. One of
the challenges of present seismic data processing resides in
the ability to identify deeper target. To this aim, either noisier
data sets or broadband seismic acquisitions are being address
by geophysical signal processing. Fig. 10 thus compares there-
sults obtained with [24] and the proposed algorithm. Although
the random noise is apparently highly heteroskedastic, both
methods are able to successfully retrieve the weak primary
below the multiple level, especially of the left side of the
figure. The method in [24] may suffer from a little more pre-
echo above the primary in the top-left corner of Fig. 10-(a),
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mean(SNRy)
Haar Daubechies Symmlet

ρ̃ ℓ1 ℓ2 ℓ1,2 ℓ1 ℓ2 ℓ1,2 ℓ1 ℓ2 ℓ1,2
σ L b f b f b f b f b f b f b f b f b f

0.01 3 19.1 21.3 20.2 21.9 18.9 21.3 20.9 21.8 21.1 22.3 20.1 21.8 19.9 21.8 21.4 22.5 19.2 21.9
4 20.6 21.8 21.6 22.4 20.3 21.8 20.8 22.0 22.1 22.7 21.1 22.1 20.3 22.0 22.3 22.8 20.4 22.1

0.02 3 19.2 20.3 20.1 21.1 18.6 20.1 20.6 21.3 21.2 22.1 20.4 21.2 20.1 21.5 21.4 22.3 19.5 21.3
4 19.8 20.8 20.5 21.3 19.5 20.6 20.1 21.6 21.0 22.2 20.0 21.5 20.0 21.6 21.5 22.4 19.2 21.6

0.04 3 16.5 18.2 16.9 18.5 16.2 18.0 18.0 20.1 18.3 20.6 17.9 19.9 17.9 20.2 18.4 20.8 17.6 20.0
4 16.7 18.5 16.9 18.8 16.5 18.3 18.0 20.2 18.3 20.7 17.7 20.0 17.9 20.3 18.21 20.7 17.5 20.1

0.08 3 12.3 14.7 12.5 14.9 12.2 14.6 14.3 17.4 14.4 17.7 14.2 17.3 14.1 17.6 14.3 17.9 14.0 17.5
4 12.4 15.0 12.5 15.2 12.3 14.9 14.2 17.5 14.4 17.7 14.1 17.3 13.9 17.5 14.0 17.7 13.2 17.3

TABLE I
SNR,AVERAGED OVER100 NOISE REALIZATIONS FOR THE ESTIMATIONS OFy.

mean(SNRs)
Haar Daubechies Symmlet

ρ̃ ℓ1 ℓ2 ℓ1,2 ℓ1 ℓ2 ℓ1,2 ℓ1 ℓ2 ℓ1,2
σ L b f b f b f b f b f b f b f b f b f

0.01 3 26.3 27.0 27.4 28.4 26.2 28.0 27.6 28.0 28.2 28.3 26.9 28.0 26.7 28.0 27.9 28.4 26.5 28.0
4 27.6 28.3 28.4 28.7 27.4 28.4 27.6 28.1 28.6 28.5 27.7 28.1 27.1 28.1 28.5 28.6 27.1 28.2

0.02 3 25.3 25.6 25.7 25.7 25.0 25.5 25.8 25.5 25.8 25.6 25.8 25.5 25.3 25.5 25.8 25.6 25.1 25.5
4 25.8 25.7 26.0 25.8 25.7 25.8 25.5 25.6 25.7 25.6 25.5 25.6 25.3 25.6 25.9 25.6 25.3 25.6

0.04 3 22.1 22.1 21.8 21.8 22.2 22.3 22.3 22.1 20.1 21.8 22.5 22.3 22.1 22.1 21.8 21.8 22.2 22.3
4 22.3 22.2 21.9 21.8 22.4 22.3 22.2 22.1 21.8 21.8 22.4 22.2 21.2 22.1 21.8 21.8 22.2 22.3

0.08 3 18.4 18.4 17.7 17.8 18.6 18.6 18.5 18.4 17.8 17.8 18.7 18.6 18.4 18.4 17.8 17.8 18.6 18.6
4 18.4 18.4 17.8 17.8 18.6 18.6 18.5 18.4 17.8 17.7 18.7 18.6 18.4 18.4 17.8 17.8 18.6 18.6

TABLE II
SNR,AVERAGED OVER100 NOISE REALIZATIONS FOR THE ESTIMATIONS OFs.

tf/b for primaries tf/b for multiples
Haar Daubechies Symmlet Haar Daubechies Symmlet

ρ̃ ℓ1 ℓ2 ℓ1,2 ℓ1 ℓ2 ℓ1,2 ℓ1 ℓ2 ℓ1,2 ℓ1 ℓ2 ℓ1,2 ℓ1 ℓ2 ℓ1,2 ℓ1 ℓ2 ℓ1,2
σ L f/b f/b f/b f/b f/b f/b f/b f/b f/b f/b f/b f/b f/b f/b f/b f/b f/b f/b

0.01 3 7.3 4.3 7.7 2.6 3.0 4.9 5.6 2.6 7.2 2.7 3.2 7.5 1.3 0.3 3.5 5.3 1.5 6.0
4 4.2 2.8 5.1 4.2 1.9 3.3 5.3 1.3 5.1 2.9 1.1 4.2 2.5 -0.2 1.6 4.4 0.1 4.4

0.02 3 3.0 2.7 3.4 1.5 2.1 1.6 2.8 2.1 3.1 0.7 0.0 1.6 -1.1 -0.8 -0.9 0.5 -0.5 1.5
4 2.6 2.3 2.5 3.0 2.9 2.7 3.0 1.7 4.3 -0.1 -0.6 0.1 0.3 -0.3 0.2 0.8 -0.7 1.2

0.04 3 3.4 3.5 3.2 3.0 3.9 2.7 3.2 3.8 3.2 0.0 0.0 0.1 -0.6 4.7 -0.6 -0.2 -0.1 0.1
4 3.5 3.7 3.3 3.2 3.8 2.8 3.3 3.7 3.3 -0.3 -0.1 -0.2 -0.3 -0.1 -0.3 2.6 -0.1 0.1

0.08 3 3.5 3.5 3.5 3.5 3.9 3.3 3.8 4.2 3.7 0.0 0.0 0.1 -0.2 0.0 -0.1 -0.1 0.0 0.0
4 3.8 3.8 3.7 3.4 3.6 3.2 3.8 4.1 4.2 0.0 0.0 0.0 -0.1 0.0 -0.2 -0.1 0.0 0.0

TABLE III
NORMALIZED DIFFERENCE SIGNIFICANCE INDEX.

while a remnant−45◦ shadow affects the proximal multiple
removal in its central part of Fig. 10-(b).

The increased robustness to noisier seismic data is estimated
with a wide-band Gaussian noise, added to the seismic field
data. The outcome is illustrated in Fig. 11. While the primary
can still be tracked with [24] in Fig. 11-(a), it dims inside the
ambient noise on the left-most side. The proposed template-
based multiple filtering is more robust to noise, reflecting its
practical potential. Naturally, the anisotropic, oriented nature
of seismic data, and the directional diversity of primariesand
multiples, suggests an extension to oriented frames in two
dimensions.

VII. C ONCLUSIONS

We have proposed a generic methodology to impose sparsity
and regularity properties through constrained adaptive filtering
in a transformed domain. This method exploits side informa-
tion from approximate disturbance templates. The employed

proximal framework permits different strategies for sparse
modeling, additive noise removal, and adaptive filter design
under appropriate regularity and amplitude coefficient concen-
tration constraints. The proposed approach is evaluated on
seismic data using different orthogonal wavelet bases and tight
frames, and various sparsity measures for wavelet coefficients.
The standard sparsity-proneℓ1-norm is usefully complemented
by alternative concentration measures, such asℓ2 or ℓ1,2-
norms, which seem better suited to adaptive filter design. Its
performance is interesting for instance in recovering weak
signals buried under both strong random and structured noise.
Provided appropriate templates are obtained, this structured-
pattern filtering algorithm could be useful in other application
areas, e.g. acoustic echo-cancellation in sound and speech, non-
destructive testing where transmitted waves may rebound at
material interfaces (e.g. ultrasounds), or pattern matching in
images. In our future work, two-dimensional directional mul-
tiscale approaches [44] may provide sparser representations
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Data composed by three events (σ = 0.08), one primary and two multiples, SNR= 1.71 dB (a); multiples composed by two estimated events (b);
output separated primaries with [24], SNR= 3.11 dB (c) and our method, SNR= 16.77 dB (d); output adapted multiples with [24], SNR= 3.1 dB (e) and
our method, SNR= 15.44 dB (f).

for seismic data. Second, sparsity priors could be enforcedon
multiple signals as well, with a need for more automation in
optimal choices on loss functions in the proximal formulation,
potentially by using other measures thanℓ1 [56]–[58]. The
Bayesian framework provided in this work could also serve to
develop other statistical approaches for multiple removal, e.g.
by using Markov Chain Monte-Carlo methods.
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Fig. 9. Portion of a common receiver gather: (a) recorded seismic data with
a partially appearing primary (b) multiple wavefield template.
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2008.

[42] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs, “A variational
formulation for frame based inverse problems,”Inverse Probl., vol. 23,
no. 4, pp. 1495–1518, Aug. 2007.

[43] M. Kowalski, “Sparse regression using mixed norms,”Appl. Comp.
Harm. Analysis, vol. 27, no. 3, pp. 303–324, Nov. 2009.

[44] L. Jacques, L. Duval, C. Chaux, and G. Peyré, “A panorama on
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