Retour sur... la ligne de base BEADS : correction et filtrage conjoints de mesures analytiques exploitant positivité et parcimonie

X. NING, I. W. SELESNICK Polytechnic School of Engineering, New York University L. DUVAL, A. PIRAYRE IFP Energies nouvelles, Université Paris-Est

9 octobre 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Old peaks cast long shadows

Old peaks cast long shadows

Old peaks cast long shadows

4 ロ ト 4 部 ト 4 注 ト 4 注 ト 2 2/27

Old peaks cast long shadows

<□ > < @ > < E > < E > E のQ (~ 2/27)

Old peaks cast long shadows

The quick version

- ► *Issue*: how to accurately & repeatably quantize peaks?
 - avoiding separate baseline and noise removal
- *Question*: where is the string behind the bead?
 - ► without precise models for: peak, noise, baseline

- ► Answer: use main measurement properties + optimization
 - sparsity+symmetry, stationarity, smoothness
- ► BEADS: Baseline Estimation And Denoising w/ Sparsity

Outline

INTRODUCTION FOREWORD OUTLINE* BACKGROUND

BEADS MODEL AND ALGORITHM NOTATIONS COMPOUND SPARSE DERIVATIVE MODELING MAJORIZE-MINIMIZE TYPE OPTIMIZATION

Evaluation and results GC: Simulated baseline and Gaussian noise GC: Simulated Poisson noise GC: Real data $GC \times GC$: Real data Others

CONCLUSIONS

Figure: Image processing: varying illumination

- Background affects quantitative evaluation/comparison
- ► In other domains: (instrumental) bias, (seasonal) trend
- ► In analytical chemistry: drift, continuum, wander, baseline
- Very rare cases of parametric modeling (piecewise linear, polynomial, spline)

Figure: Econometrics: trends and seasonality

- Background affects quantitative evaluation/comparison
- ► In other domains: (instrumental) bias, (seasonal) trend
- ► In analytical chemistry: drift, continuum, wander, baseline
- Very rare cases of parametric modeling (piecewise linear, polynomial, spline)

Figure: Biomedical: ECG isoelectric line or baseline wander

- Background affects quantitative evaluation/comparison
- ► In other domains: (instrumental) bias, (seasonal) trend
- ► In analytical chemistry: drift, continuum, wander, baseline
- Very rare cases of parametric modeling (piecewise linear, polynomial, spline)

Figure: Gas chromatography: baseline

- Background affects quantitative evaluation/comparison
- ► In other domains: (instrumental) bias, (seasonal) trend
- ► In analytical chemistry: drift, continuum, wander, baseline
- Very rare cases of parametric modeling (piecewise linear, polynomial, spline)

Analytical chemistry, biological data

Signal separation into three main morphological components

E つへで 6/27

Notations and assumptions

Morphological decomposition: $\mathbf{y} = \mathbf{x} + \mathbf{f} + \mathbf{w}$, signals in \mathbb{R}^N

- y: observation (spectrum, analytical data)
- x: clean series of peaks (no baseline, no noise)
- ► f: baseline
- ► w: noise

Assumption: without peaks, the baseline can be (approx.) recovered from noise-corrupted data by low-pass filtering

- ▶ $\hat{\mathbf{f}} = \mathbf{L}(\mathbf{y} \hat{\mathbf{x}})$: L: low-pass filter; $\mathbf{H} = \mathbf{I} \mathbf{L}$: high-pass filter
- ► formulated as $\|\mathbf{y} \hat{\mathbf{x}} \hat{\mathbf{f}}\|_2^2 = \|\mathbf{H}(\mathbf{y} \hat{\mathbf{x}})\|_2^2$
- ► Going further with **D**_{*i*}: differentiation operators

Compound sparse derivative modeling

An estimate $\hat{\mathbf{x}}$ can be obtained via:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ F(\mathbf{x}) = \frac{1}{2} \| \mathbf{H}(\mathbf{y} - \mathbf{x}) \|_{2}^{2} + \sum_{i=0}^{M} \lambda_{i} R_{i} \left(\mathbf{D}_{i} \mathbf{x} \right) \right\}.$$

Examples of (smooth) sparsity promoting functions for R_i

$$\phi_i^A = |x|$$

$$\phi_i^B = \sqrt{|x|^2 + \epsilon}$$

$$\phi_i^C = |x| - \epsilon \log (|x| + \epsilon)$$

Compound sparse derivative modeling Take the positivity of chromatogram peaks into account:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ F(\mathbf{x}) = \frac{1}{2} \| \mathbf{H}(\mathbf{y} - \mathbf{x}) \|_2^2 + \lambda_0 \sum_{n=0}^{N-1} \theta_\epsilon(x_n; r) + \sum_{i=1}^M \lambda_i \sum_{n=0}^{N_i-1} \phi\left([\mathbf{D}_i \mathbf{x}]_n \right) \right\}.$$

Start from:

$$\theta(x; r) = \begin{cases} x, & x \ge 0\\ -rx, & x < 0 \end{cases}$$

9/27

Compound sparse derivative modeling Take the positivity of chromatogram peaks into account:

$$\begin{split} \hat{\mathbf{x}} &= \arg\min_{\mathbf{x}} \Big\{ F(\mathbf{x}) = \frac{1}{2} \| \mathbf{H}(\mathbf{y} - \mathbf{x}) \|_2^2 \\ &+ \lambda_0 \sum_{n=0}^{N-1} \theta_\epsilon(x_n; r) + \sum_{i=1}^M \lambda_i \sum_{n=0}^{N_i - 1} \phi\left([\mathbf{D}_i \mathbf{x}]_n \right) \Big\}. \end{split}$$

and majorize it

<□ ト < □ ト < □ ト < 三 ト < 三 ト < 三 ト ○ Q (?) 9/27

CONCLUSIONS

Compound sparse derivative modeling Take the positivity of chromatogram peaks into account:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ F(\mathbf{x}) = \frac{1}{2} \| \mathbf{H}(\mathbf{y} - \mathbf{x}) \|_{2}^{2} + \lambda_{0} \sum_{n=0}^{N-1} \theta_{\epsilon}(x_{n}; r) + \sum_{i=1}^{M} \lambda_{i} \sum_{n=0}^{N_{i}-1} \phi\left([\mathbf{D}_{i}\mathbf{x}]_{n} \right) \right\}.$$

then smooth it:

<□▶ < @ ▶ < 注 ▶ < 注 ▶ < 注 ▶ < 三 り Q ○ 9 / 27

Compound sparse derivative modeling Take the positivity of chromatogram peaks into account:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ F(\mathbf{x}) = \frac{1}{2} \| \mathbf{H}(\mathbf{y} - \mathbf{x}) \|_2^2 + \lambda_0 \sum_{n=0}^{N-1} \theta_\epsilon(x_n; r) + \sum_{i=1}^M \lambda_i \sum_{n=0}^{N_i-1} \phi\left([\mathbf{D}_i \mathbf{x}]_n\right) \right\}.$$

then majorize it:

$$g_0(x,v) = \begin{cases} \frac{1+r}{4|v|}x^2 + \frac{1-r}{2}x + |v|\frac{1+r}{4}, & |v| > \epsilon\\ \frac{1+r}{4\epsilon}x^2 + \frac{1-r}{2}x + \epsilon\frac{1+r}{4}, & |v| \le \epsilon. \end{cases}$$

Overall principle for Majoration-Minimization-Maximization

Figure: Courtesy Peng Wang¹

¹https://commons.wikimedia.org/w/index.php?curid=17689902コ ト 《 戸 ト 《 三 ト 《 三 ト) 重 の Q (や 10/27

BEADS Algorithm (short)

Input: **y**, **A**, **B**,
$$\lambda_i$$
, $i = 0, ..., M$

1.
$$\mathbf{b} = \mathbf{B}^{\mathsf{T}} \mathbf{B} \mathbf{A}^{-1} \mathbf{y}$$

2.
$$\mathbf{x} = \mathbf{y}$$
 (Initialization)
Repeat

3.
$$[\mathbf{\Lambda}_i]_{n,n} = \frac{\phi'([\mathbf{D}_i \mathbf{x}]_n)}{[\mathbf{D}_i \mathbf{x}]_n}, \quad i = 0, \dots, M,$$

4.
$$\mathbf{M} = \sum_{i=0}^{M} \lambda_i \mathbf{D}_i^{\mathsf{T}} \mathbf{\Lambda}_i \mathbf{D}_i$$

5.
$$\mathbf{Q} = \mathbf{B}^{\mathsf{T}}\mathbf{B} + \mathbf{A}^{\mathsf{T}}\mathbf{M}\mathbf{A}$$

$$\mathbf{6.} \qquad \mathbf{x} = \mathbf{A}\mathbf{Q}^{-1}\mathbf{b}$$

Until converged

8.
$$\mathbf{f} = \mathbf{y} - \mathbf{x} - \mathbf{B}\mathbf{A}^{-1}(\mathbf{y} - \mathbf{x})$$

Output: \mathbf{x} , \mathbf{f}

・ロト・日ト・モト・モト・ ヨー つへぐ

Evaluation 1

Figure: Simulated chromatograms w/ polynomial+sine baseline

<□ > < @ > < E > < E > E の Q @ 12 / 27

Evaluation 1 with Gaussian noise

	0 dB		10 dB		20 dB	
	Mean	Std	Mean	Std	Mean	Std
BEADS backcor airLPS	28.1 24.91 20.26	8.52 9.75 9.65	32.64 31.27 22.54	8.02 8.33 10.15	38.33 36.47 26.71	6.74 6.53 7.76

Evaluation 2

Figure: Simulated chromatograms w/ limited power spectrum noise

Evaluation 2 with Gaussian noise

・ロト・4回ト・ヨト・ヨー・シッペー

Evaluation 3 with Poisson noise

Figure: Simulated chromatograms w/ Poisson noise

Figure: Original, superimposed, clean, noise

Figure: Original data

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 の 4 (*) 18 / 27

Figure: 2D background (estimated)

Figure: Noise (estimated)

Figure: BEADS corrected data

Figure: Original data (again!)

<□ ト < □ ト < □ ト < 三 ト < 三 ト 三 の < ○ 18 / 27

Figure: Original data

<□ > < @ > < 注 > < 注 > 注 の Q (~ 19 / 27)

Results: two-dimensional chromatography (data 3)

Figure: 2D background (estimated)

Results: two-dimensional chromatography (data 3)

Figure: Noise (estimated)

<□ ▶ < @ ▶ < 注 ▶ < 注 ▶ < 注 ▶ 2 の Q (~ 19 / 27)

Figure: BEADS corrected data

<□ > < @ > < 注 > < 注 > 注 の Q (~ 19 / 27)

Results: two-dimensional chromatography (data 3)

Figure: Original data (again!)

Results: performance

Figure: Linear cost per sample (almost)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Other known uses

- ► A fairly generic model (sparsity, positivity/negativity)
 - gas chromatography: mono-dimensional and comprehensive/two-dimensional
 - Raman spectra: biological and biomedical
 - MUSE (Multi Unit Spectroscopic Explorer): astronomical hyperspectral galaxy spectrum
 - X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD
 - high-resolution mass spectrometry
 - postprandial Plasma Glucose (PPG), multichannel electroencephalogram (EEG) and single-channel electrocardiogram (ECG)
 - arabic characters

Other known uses

- A fairly generic model (sparsity, positivity/negativity)
 - gas chromatography: mono-dimensional and comprehensive/two-dimensional
 - Raman spectra: biological and biomedical
 - MUSE (Multi Unit Spectroscopic Explorer): astronomical hyperspectral galaxy spectrum
 - X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD
 - high-resolution mass spectrometry
 - postprandial Plasma Glucose (PPG), multichannel electroencephalogram (EEG) and single-channel electrocardiogram (ECG)
 - arabic characters

التلاك المقدى لتلاك المقرى

 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・ 21/27

Conclusions

- Joint Baseline Estimation and Denoising
 - Little "hard" modeling
 - Codes available in Matlab² and R³

 Interaction between "separative science" and "source separation"

² http://lc.cx/beads 3

[්]http://www.laurent-duval.eu/lcd-publications.html#beads⊑r+code > < ≣ > < ≣ > ිද ංා ද

Work in progress

- Ongoing tests on analytical chemistry data: NIR, NMR, MS
- Better documentation and usability
- Estimated baseline and noise use?
- ► Novel metrics: errors related to peak quantities
- ► Novel filtering: an update on Savitzky-Golay filters
- ► Novel deconvolution: sparse & positive with norm ratios

More for free: additional references

C. Vendeuvre, R. Ruiz-Guerrero, F. Bertoncini, L. Duval, D. Thiébaut, and MC. Hennion.
Characterisation of middle-distillates by comprehensive two-dimensional gas chromatography (GC \times GC):
A powerful alternative for performing various standard analysis of middle-distillates.
J. Chrom. A, Sep. 2005.

C. Vendeuvre, R. Ruiz-Guerrero, F. Bertoncini, L. Duval, and D. Thiébaut. Comprehensive two-dimensional gas chromatography for detailed characterisation of petroleum products. *Oil Gas Sci. Tech.*, Jan.-Feb. 2007.

X. Ning, I. W. Selesnick, and L. Duval.

Chromatogram baseline estimation and denoising using sparsity (BEADS). *Chemometr. Intell. Lab. Syst.*, Dec. 2014.

A. Repetti, M. Q. Pham, L. Duval, E. Chouzenoux, and J.-C. Pesquet.

Euclid in a taxicab: Sparse blind deconvolution with smoothed ℓ_1/ℓ_2 regularization. *IEEE Signal Process. Lett.*, May 2015.

C. Couprie, L. Duval, M. Moreaud, S. Hénon, M. Tebib, V. Souchon. BARCHAN: Blob Alignment for Robust CHromatographic ANalysis. *Journal of Chromatography A.*, Feb. 2017.

L. Duval, A. Pirayre and I. W. Selesnick.

Peaks, baseline and noise separation. Chapter in Source Separation in Physical-Chemical Sensing, 2018.

We now have a majorizer for *F*

$$G(\mathbf{x}, \mathbf{v}) = \frac{1}{2} \|\mathbf{H}(\mathbf{y} - \mathbf{x})\|_{2}^{2} + \lambda_{0} \mathbf{x}^{\mathsf{T}} [\mathbf{\Gamma}(\mathbf{v})] \mathbf{x} + \lambda_{0} \mathbf{b}^{\mathsf{T}} \mathbf{x} + \sum_{i=1}^{M} \left[\frac{\lambda_{i}}{2} (\mathbf{D}_{i} \mathbf{x})^{\mathsf{T}} [\Lambda(\mathbf{D}_{i} \mathbf{v})] (\mathbf{D}_{i} \mathbf{x}) \right] + c(\mathbf{v}).$$

Minimizing $G(\mathbf{x}, \mathbf{v})$ with respect to \mathbf{x} yields

$$\mathbf{x} = \left[\mathbf{H}^{\mathsf{T}}\mathbf{H} + 2\lambda_0 \mathbf{\Gamma}(\mathbf{v}) + \sum_{i=1}^{M} \lambda_i \mathbf{D}_i^{\mathsf{T}} \left[\Lambda(\mathbf{D}_i \mathbf{v})\right] \mathbf{D}_i\right]^{-1} \left(\mathbf{H}^{\mathsf{T}}\mathbf{H}\mathbf{y} - \lambda_0 \mathbf{b}\right).$$

with notations

$$c(\mathbf{v}) = \sum_{n} \left[\phi(v_n) - \frac{v_n}{2} \phi'(v_n) \right].$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 少 9 (や 25 / 27

We now have a majorizer for *F*

$$G(\mathbf{x}, \mathbf{v}) = \frac{1}{2} \|\mathbf{H}(\mathbf{y} - \mathbf{x})\|_{2}^{2} + \lambda_{0} \mathbf{x}^{\mathsf{T}} [\mathbf{\Gamma}(\mathbf{v})] \mathbf{x} + \lambda_{0} \mathbf{b}^{\mathsf{T}} \mathbf{x} + \sum_{i=1}^{M} \left[\frac{\lambda_{i}}{2} (\mathbf{D}_{i} \mathbf{x})^{\mathsf{T}} [\Lambda(\mathbf{D}_{i} \mathbf{v})] (\mathbf{D}_{i} \mathbf{x}) \right] + c(\mathbf{v}).$$

Minimizing $G(\mathbf{x}, \mathbf{v})$ with respect to \mathbf{x} yields

$$\mathbf{x} = \left[\mathbf{H}^{\mathsf{T}}\mathbf{H} + 2\lambda_0 \mathbf{\Gamma}(\mathbf{v}) + \sum_{i=1}^{M} \lambda_i \mathbf{D}_i^{\mathsf{T}} \left[\Lambda(\mathbf{D}_i \mathbf{v})\right] \mathbf{D}_i\right]^{-1} \left(\mathbf{H}^{\mathsf{T}}\mathbf{H}\mathbf{y} - \lambda_0 \mathbf{b}\right).$$

with notations

$$[\mathbf{\Gamma}(\mathbf{v})]_{n,n} = \begin{cases} \frac{1+r}{4|v_n|}, & |v_n| \ge \epsilon\\ \\ \frac{1+r}{4\epsilon}, & |v_n| \leqslant \epsilon\\ \frac{1+r}{4\epsilon}, & |v_n| \leqslant \epsilon \end{cases}$$

We now have a majorizer for *F*

$$G(\mathbf{x}, \mathbf{v}) = \frac{1}{2} \|\mathbf{H}(\mathbf{y} - \mathbf{x})\|_{2}^{2} + \lambda_{0} \mathbf{x}^{\mathsf{T}} [\mathbf{\Gamma}(\mathbf{v})] \mathbf{x} + \lambda_{0} \mathbf{b}^{\mathsf{T}} \mathbf{x} + \sum_{i=1}^{M} \left[\frac{\lambda_{i}}{2} (\mathbf{D}_{i} \mathbf{x})^{\mathsf{T}} [\Lambda(\mathbf{D}_{i} \mathbf{v})] (\mathbf{D}_{i} \mathbf{x}) \right] + c(\mathbf{v}).$$

Minimizing $G(\mathbf{x}, \mathbf{v})$ with respect to \mathbf{x} yields

$$\mathbf{x} = \left[\mathbf{H}^{\mathsf{T}}\mathbf{H} + 2\lambda_0 \mathbf{\Gamma}(\mathbf{v}) + \sum_{i=1}^{M} \lambda_i \mathbf{D}_i^{\mathsf{T}} \left[\Lambda(\mathbf{D}_i \mathbf{v})\right] \mathbf{D}_i\right]^{-1} \left(\mathbf{H}^{\mathsf{T}}\mathbf{H}\mathbf{y} - \lambda_0 \mathbf{b}\right).$$

with notations

$$[\Lambda(\mathbf{v})]_{n,n} = \frac{\phi'(v_n)}{v_n}$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 少 9 (や 25 / 27

We now have a majorizer for *F*

$$G(\mathbf{x}, \mathbf{v}) = \frac{1}{2} \|\mathbf{H}(\mathbf{y} - \mathbf{x})\|_{2}^{2} + \lambda_{0} \mathbf{x}^{\mathsf{T}} [\mathbf{\Gamma}(\mathbf{v})] \mathbf{x} + \lambda_{0} \mathbf{b}^{\mathsf{T}} \mathbf{x} + \sum_{i=1}^{M} \left[\frac{\lambda_{i}}{2} (\mathbf{D}_{i} \mathbf{x})^{\mathsf{T}} [\Lambda(\mathbf{D}_{i} \mathbf{v})] (\mathbf{D}_{i} \mathbf{x}) \right] + c(\mathbf{v}).$$

Minimizing $G(\mathbf{x}, \mathbf{v})$ with respect to \mathbf{x} yields

$$\mathbf{x} = \left[\mathbf{H}^{\mathsf{T}}\mathbf{H} + 2\lambda_0 \mathbf{\Gamma}(\mathbf{v}) + \sum_{i=1}^{M} \lambda_i \mathbf{D}_i^{\mathsf{T}} \left[\Lambda(\mathbf{D}_i \mathbf{v})\right] \mathbf{D}_i\right]^{-1} \left(\mathbf{H}^{\mathsf{T}}\mathbf{H}\mathbf{y} - \lambda_0 \mathbf{b}\right).$$

with notations

$$\left[\mathbf{b}\right]_n = \frac{1-r}{2}$$

<□ > < @ > < E > < E > E の Q (~ 25 / 27)

Writing filter $\mathbf{H} = \mathbf{A}^{-1}\mathbf{B} \approx \mathbf{B}\mathbf{A}^{-1}$ (banded matrices) we have

$$\mathbf{x} = \mathbf{A}\mathbf{Q}^{-1} \left(\mathbf{B}^{\mathsf{T}}\mathbf{B}\mathbf{A}^{-1}\mathbf{y} - \lambda_0 \mathbf{A}^{\mathsf{T}}\mathbf{b} \right)$$

where **Q** is the banded matrix,

$$\mathbf{Q} = \mathbf{B}^\mathsf{T}\mathbf{B} + \mathbf{A}^\mathsf{T}\mathbf{M}\mathbf{A},$$

and **M** is the banded matrix,

$$\mathbf{M} = 2\lambda_0 \mathbf{\Gamma}(\mathbf{v}) + \sum_{i=1}^M \lambda_i \mathbf{D}_i^{\mathsf{T}} \left[\Lambda(\mathbf{D}_i \mathbf{v}) \right] \mathbf{D}_i$$

4 ロ ト 4 部 ト 4 語 ト 4 語 ト 語 の 4 で
26 / 27

Using previous equations, the MM iteration takes the form:

$$\mathbf{M}^{(k)} = 2\lambda_0 \mathbf{\Gamma}(\mathbf{x}^{(k)}) + \sum_{i=1}^M \lambda_i \mathbf{D}_i^{\mathsf{T}} [\Lambda(\mathbf{D}_i \mathbf{x}^{(k)})] \mathbf{D}_i.$$
$$\mathbf{Q}^{(k)} = \mathbf{B}^{\mathsf{T}} \mathbf{B} + \mathbf{A}^{\mathsf{T}} \mathbf{M}^{(k)} \mathbf{A}$$
$$\mathbf{x}^{(k+1)} = \mathbf{A} [\mathbf{Q}^{(k)}]^{-1} \left(\mathbf{B}^{\mathsf{T}} \mathbf{B} \mathbf{A}^{-1} \mathbf{y} - \lambda_0 \mathbf{A}^{\mathsf{T}} \mathbf{b} \right)$$

4 ロ ト 4 部 ト 4 注 ト 4 注 ト 注 少 4 ペ
27 / 27