Adaptive filtering in wavelet frames: application to echoe (multiple) suppression in geophysics

S. Ventosa, S. Le Roy, I. Huard, A. Pica, H. Rabeson, P. Ricarte, L. Duval, M.-Q. Pham, C. Chaux, J.-C. Pesquet

> **IFPFN** laurent.duval [ad] ifpen.fr Journées images & signaux

> > 2014/03/18

Context

2/ ---

In just one slide: on echoes and morphing

Wavelet frame coefficients: data and model

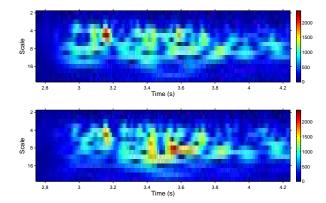


Figure 1: Morphing and adaptive subtraction required

3/44

Agenda

- 1. Issues in geophysical signal processing
- 2. Problem: multiple reflections (echoes)
 - adaptive filtering with approximate templates
- 3. Continuous, complex wavelet frames
 - how they (may) simplify adaptive filtering
 - and how they are discretized (back to the discrete world)
- 4. Adaptive filtering (morphing)
 - no constraint: unary filters
 - with constraints: proximal tools
- Conclusions

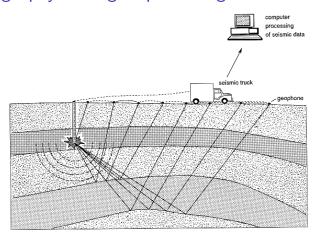


Figure 2: Seismic data acquisition and wave fields

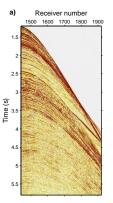


Figure 3: Seismic data: aspect & dimensions (time, offset)

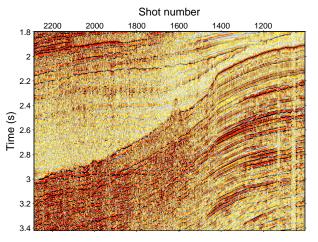


Figure 4: Seismic data: aspect & dimensions (time, offset)

Context

0000●0 6/44

Reflection seismology:

- seismic waves propagate through the subsurface medium
- seismic traces: seismic wave fields recorded at the surface
 - primary reflections: geological interfaces
 - many types of distortions/disturbances
- processing goal: extract relevant information for seismic data
- led to important signal processing tools:
 - ℓ₁-promoted deconvolution (Claerbout, 1973)
 - wavelets (Morlet, 1975)
- exabytes (10^6 gigabytes) of incoming data
 - need for fast, scalable (and robust) algorithms

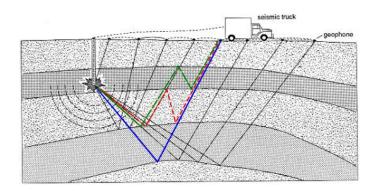


Figure 5: Seismic data acquisition: focus on multiple reflections

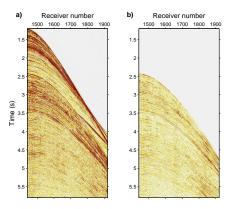


Figure 5: Reflection data: shot gather and template

Multiple reflections:

- seismic waves bouncing between layers
- one of the most severe types of interferences
- obscure deep reflection layers
- high cross-correlation between primaries (p) and multiples (m)
- additional incoherent noise (n)
- d(t) = p(t) + m(t) + n(t)
 - with approximate templates: $r_1(t)$, $r_2(t)$,... $r_J(t)$
- Issue: how to adapt and subtract approximate templates?

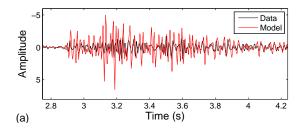


Figure 6: Multiple reflections: data trace d and template r_1

Multiple filtering:

- multiple prediction (correlation, wave equation) has limitations
- templates are not accurate
 - $m(t) \approx \sum_{i} h_{i} * r_{i}$?
 - standard: identify, apply a matching filer, subtract

$$\mathbf{h}_{\text{opt}} = \arg\min_{\mathbf{h} \in \mathbb{R}^l} \|d - \mathbf{h} * \mathbf{r}\|^2$$

- primaries and multiples are not (fully) uncorrelated
 - same (seismic) source
 - similarities/dissimilarities in time/frequency
- variations in amplitude, waveform, delay
- issues in matching filter length:
 - short filters and windows: local details
 - long filters and windows: large scale effects

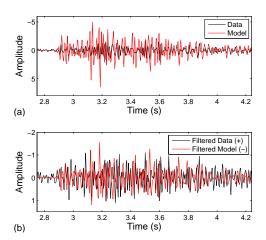


Figure 7: Multiple reflections: data trace, template and adaptation

Context

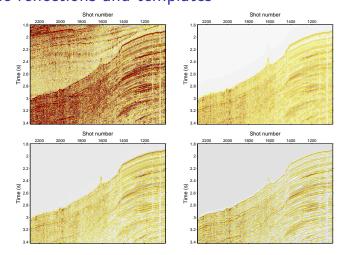


Figure 8: Multiple reflections: data trace and templates, 2D version

Context

- A long history of multiple filtering methods
 - general idea: combine adaptive filtering and transforms
 - data transforms: Fourier, Radon
 - enhance the differences between primaries, multiples and noise
 - reinforce the adaptive filtering capacity
 - intrication with adaptive filtering?
 - might be complicated (think about inverse transform)
- First simple approach:
 - exploit the non-stationary in the data
 - naturally allow both large scale & local detail matching
- ⇒ Redundant wavelet frames
 - intermediate complexity in the transform
 - simplicity in the (unary/FIR) adaptive filtering

Reminders [Gabor-1946][Ville-1948]

$$\widehat{\mathcal{H}{f}}(\omega) = -i\operatorname{sign}(\omega)\widehat{f}(\omega)$$

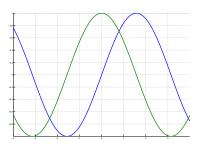


Figure 9: Hilbert pair 1

Reminders [Gabor-1946][Ville-1948]

$$\widehat{\mathcal{H}{f}}(\omega) = -i\operatorname{sign}(\omega)\widehat{f}(\omega)$$

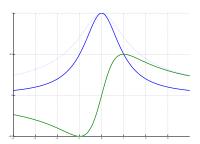


Figure 9: Hilbert pair 2

Reminders [Gabor-1946][Ville-1948]

$$\widehat{\mathcal{H}{f}}(\omega) = -i\operatorname{sign}(\omega)\widehat{f}(\omega)$$

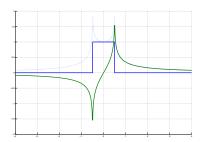


Figure 9: Hilbert pair 3

Reminders [Gabor-1946][Ville-1948]

$$\widehat{\mathcal{H}{f}}(\omega) = -i\operatorname{sign}(\omega)\widehat{f}(\omega)$$

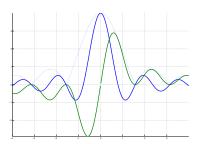


Figure 9: Hilbert pair 4

Continuous & complex wavelets

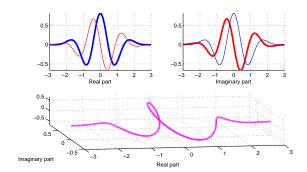


Figure 10: Complex wavelets at two different scales — 1

Continuous & complex wavelets

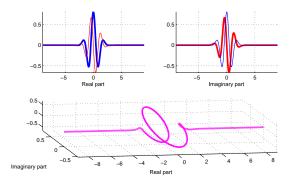


Figure 11: Complex wavelets at two different scales — 2

Continuous wavelets

• Transformation group:

$$affine = translation (\tau) + dilation (a)$$

• Basis functions:

$$\psi_{\tau,a}(t) = \frac{1}{\sqrt{a}}\psi\left(\frac{t-\tau}{a}\right)$$

- *a* > 1: dilation
- a < 1: contraction
- $1/\sqrt{a}$: energy normalization
- multiresolution (vs monoresolution in STFT/Gabor)

$$\psi_{\tau,a}(t) \xrightarrow{\mathrm{FT}} \sqrt{a}\Psi(af)e^{-i2\pi f\tau}$$

Continuous wavelets

Definition

$$C_s(\tau, a) = \int s(t)\psi_{\tau, a}^*(t)dt$$

Vector interpretation

$$C_s(\tau, a) = \langle s(t), \psi_{\tau, a}(t) \rangle$$

projection onto time-scale atoms (vs STFT time-frequency)

- Redundant transform: $\tau \to \tau \times a$ "samples"
- Parseval-like formula

$$C_s(\tau, a) = \langle S(f), \Psi_{\tau, a}(f) \rangle$$

⇒ sounder time-scale domain operations! (cf. Fourier)

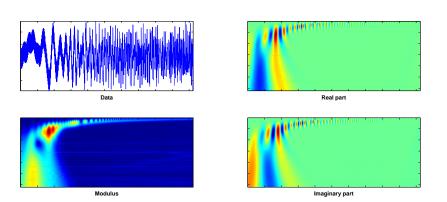


Figure 12: Noisy chirp mixture in time-scale & sampling

Continuous wavelets

Noise spread & feature simplification (signal vs wiggle)

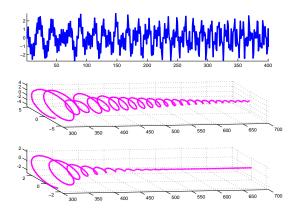


Figure 13: Noisy chirp mixture in time-scale: zoomed scaled wiggles

Continuous wavelets

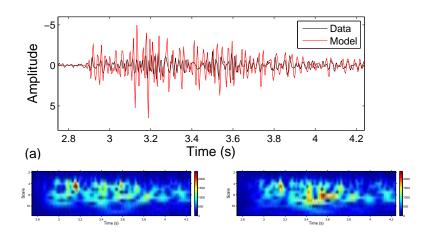


Figure 14: Which morphing is easier: time or time-scale?

Continuous wavelets

• Inversion with another wavelet ϕ

$$s(t) = \iint C_s(u, a)\phi_{u, a}(t) \frac{duda}{a^2}$$

⇒ time-scale domain processing! (back to the trace signal)

Scalogram

$$|C_s(t,a)|^2$$

Energy conversation

$$E = \iint |C_s(t,a)|^2 \frac{dtda}{a^2}$$

Parseval-like formula

$$\langle s_1, s_2 \rangle = \iint C_{s_1}(t, a) C_{s_2}^*(t, a) \frac{dt da}{a^2}$$

Continuous wavelets

• Wavelet existence: admissibility criterion

$$0 < A_h = \int_0^{+\infty} \frac{\widehat{\Phi}^*(\nu)\Psi(\nu)}{\nu} d\nu = \int_{-\infty}^0 \frac{\widehat{\Phi}^*(\nu)\Psi(\nu)}{\nu} d\nu < \infty$$

generally normalized to 1

- Easy to satisfy (common freq. support midway $0 \& \infty$)
- With $\psi = \phi$, induces band-pass property:
 - necessary condition: $|\Phi(0)| = 0$, or zero-average shape
 - ullet amplitude spectrum neglectable w.r.t. |
 u| at infinity
- Example: Morlet-Gabor (not truly admissible)

$$\psi(t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{t^2}{2\sigma^2}} e^{-i2\pi f_0 t}$$

Discretization and redundancy

Being practical again: dealing with discrete signals

• Can one sample in time-scale (CWT) domain:

$$C_s(\tau, a) = \int s(t)\psi_{\tau, a}^*(t)dt, \quad \psi_{\tau, a}(t) = \frac{1}{\sqrt{a}}\psi\left(\frac{t - \tau}{a}\right)$$

with $c_{j,k} = C_s(kb_0a_0^j, a_0^j), (j,k) \in \mathbb{Z}$ and still be able to recover s(t)?

- Result 1 (Daubechies, 1984): there exists a wavelet frame if $a_0b_0 < C$, (depending on ψ). A frame is generally redundant
- Result 2 (Meyer, 1985): there exist an orthonormal basis for a specific ψ (non trivial, Meyer wavelet) and $a_0=2$ $b_0=1$

Now: how to choose the practical level of redundancy?

Discretization and redundancy

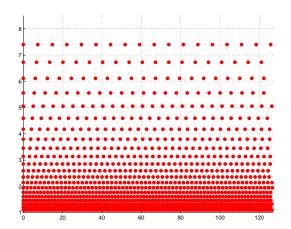


Figure 15: Wavelet frame sampling: J=21, $b_0=1$, $a_0=1.1$

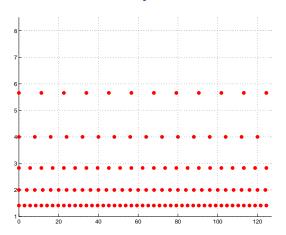


Figure 15: Wavelet frame sampling: J=5, $b_0=2$, $a_0=\sqrt{2}$

Discretization and redundancy

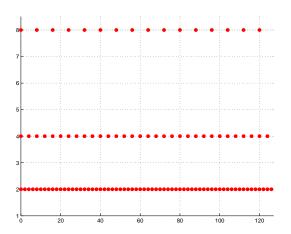


Figure 15: Wavelet frame sampling: J=3, $b_0=1$, $a_0=2$

Discretization and redundancy

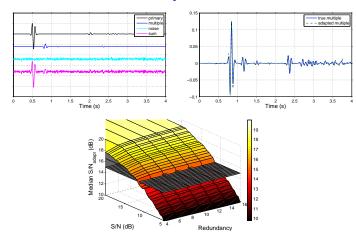


Figure 16: Redundancy selection with variable noise experiments

28/44

Discretization and redundancy

• Complex Morlet wavelet:

$$\psi(t) = \pi^{-1/4} e^{-i\omega_0 t} e^{-t^2/2}, \, \omega_0$$
: central frequency

• Discretized time r, octave j, voice v:

$$\psi_{r,j}^v[n] = \frac{1}{\sqrt{2^{j+v/V}}} \psi\left(\frac{nT - r2^j b_0}{2^{j+v/V}}\right), b_0$$
: sampling at scale zero

Time-scale analysis:

$$\mathbf{d} = d_{r,j}^v = \left\langle d[n], \psi_{r,j}^v[n] \right\rangle = \sum_{n} d[n] \overline{\psi_{r,j}^v[n]}$$

Discretization and redundancy

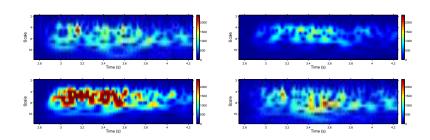


Figure 17: Morlet wavelet scalograms, data and templates

Take advantage from the closest similarity/dissimilarity:

 remember wiggles: on sliding windows, at each scale, a single complex coefficient compensates amplitude and phase

Unary filters

• Windowed unary adaptation: complex unary filter h (a_{opt}) compensates delay/amplitude mismatches:

$$\mathbf{a}_{\mathrm{opt}} = \operatorname*{arg\,min}_{\{a_j\}(j\in J)} \left\| \mathbf{d} - \sum_j a_j \mathbf{r}_k \right\|^2$$

Vector Wiener equations for complex signals:

$$\langle \mathbf{d}, \mathbf{r}_m \rangle = \sum_j a_j \langle \mathbf{r}_j, \mathbf{r}_m \rangle$$

Time-scale synthesis:

$$\hat{d}[n] = \sum_{r} \sum_{i,v} \hat{d}_{r,j}^{v} \widetilde{\psi}_{r,j}^{v}[n]$$

Results

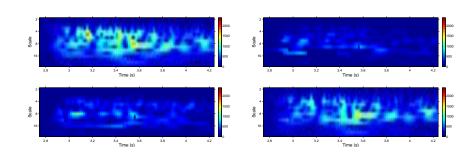


Figure 18: Wavelet scalograms, data and templates, after unary adaptation

Results (reminders)

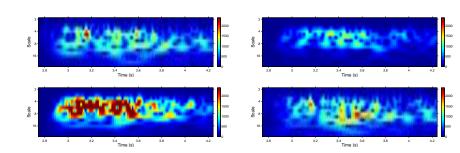


Figure 19: Wavelet scalograms, data and templates

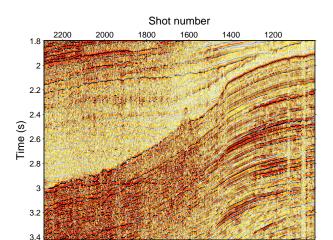


Figure 20: Original data

Results

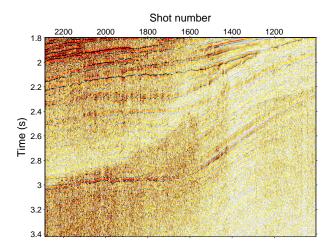


Figure 21: Filtered data, "best" template

Results

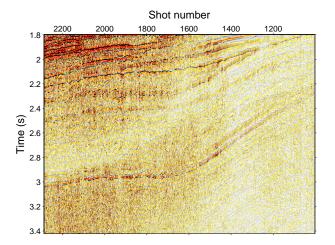


Figure 22: Filtered data, three templates

Going a little further

Impose geophysical data related assumptions: e.g. sparsity

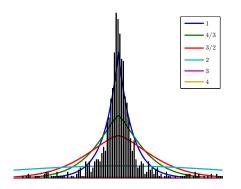


Figure 23: Generalized Gaussian modeling of seismic data wavelet frame decomposition with different power laws.

$$\begin{array}{c|c}
 \text{minimize} & \sum_{j=1}^{J} f_j(L_j x)
 \end{array}$$

$$\begin{array}{|c|c|} \hline \text{minimize} & \sum_{j=1}^J f_j(L_j x) \\ \hline \end{array}$$

with lower-semicontinuous proper convex functions f_i and bounded linear operators L_i .

• f_i can be related to noise (e.g. a quadratic term when the noise is Gaussian),

$$\begin{array}{|c|c|}\hline {\text{minimize}} & \sum\limits_{x \in \mathcal{H}}^J f_j(L_j x) \\ \hline \end{array}$$

- f_i can be related to noise (e.g. a quadratic term when the noise is Gaussian),
- f_i can be related to some a priori on the target solution (e.g. an a priori on the wavelet coefficient distribution),

$$\begin{array}{|c|c|} \hline \text{minimize} & \sum\limits_{x \in \mathcal{H}}^J f_j(\boldsymbol{L}_j x) \\ \hline \end{array}$$

- f_i can be related to noise (e.g. a quadratic term when the noise is Gaussian),
- f_i can be related to some a priori on the target solution (e.g. an a priori on the wavelet coefficient distribution),
- f_i can be related to a constraint (e.g. a support constraint),

$$\begin{array}{|c|c|}\hline {\text{minimize}} & \sum\limits_{x \in \mathcal{H}}^J f_j(L_j x) \\ \hline \end{array}$$

- f_i can be related to noise (e.g. a quadratic term when the noise is Gaussian),
- f_i can be related to some a priori on the target solution (e.g. an a priori on the wavelet coefficient distribution),
- f_i can be related to a constraint (e.g. a support constraint),
- L_i can model a blur operator,

$$\begin{array}{|c|c|} \hline \text{minimize} & \sum\limits_{x \in \mathcal{H}}^J f_j(L_j x) \\ \hline \end{array}$$

- f_i can be related to noise (e.g. a quadratic term when the noise is Gaussian),
- f_i can be related to some a priori on the target solution (e.g. an a priori on the wavelet coefficient distribution),
- f_i can be related to a constraint (e.g. a support constraint),
- L_i can model a blur operator,
- L_i can model a gradient operator (e.g. total variation),

$$\begin{array}{|c|c|}\hline {\text{minimize}} & \sum\limits_{x \in \mathcal{H}}^{J} f_j(L_j x) \\ \hline \end{array}$$

with lower-semicontinuous proper convex functions f_j and bounded linear operators L_j .

- f_j can be related to noise (e.g. a quadratic term when the noise is Gaussian),
- f_j can be related to some a priori on the target solution (e.g. an a priori on the wavelet coefficient distribution),
- f_j can be related to a constraint (e.g. a support constraint),
- L_i can model a blur operator,
- L_j can model a gradient operator (e.g. total variation),
- L_i can model a frame operator.

Context

Problem re-formulation

$$\underbrace{d^{(k)}}_{\text{observed signal}} = \underbrace{\bar{p}^{(k)}}_{\text{primary}} + \underbrace{\bar{m}^{(k)}}_{\text{multiple}} + \underbrace{n^{(k)}}_{\text{noise}}$$

Assumption: templates linked to $\bar{m}^{(k)}$ throughout time-varying (FIR) filters:

$$\bar{m}^{(k)} = \sum_{j=0}^{J-1} \sum_{p} \bar{h}_{j}^{(p)}(k) r_{j}^{(k-p)}$$

where

• $\bar{h}_{j}^{(k)}$: unknown impulse response of the filter corresponding to template j and time k, then:

$$\underbrace{d}_{\text{observed signal}} = \underbrace{\overline{p}}_{\text{primary}} + \mathbf{R} \underbrace{\overline{\mathbf{h}}}_{\text{filter}} + \underbrace{n}_{\text{noise}}$$

Assumptions

• F is a frame, \bar{p} is a realization of a random vector P:

$$f_P(p) \propto \exp(-\varphi(Fp)),$$

• $\bar{\mathbf{h}}$ is a realization of a random vector H:

$$f_H(\mathbf{h}) \propto \exp(-\rho(\mathbf{h})),$$

• n is a realization of a random vector N, of probability density:

$$f_N(n) \propto \exp(-\psi(n)),$$

slow variations along time and concentration of the filters

$$|h_j^{(n+1)}(p) - h_j^{(n)}(p)| \le \varepsilon_{j,p}; \qquad \sum_{j=0}^{J-1} \widetilde{\rho}_j(h_j) \le \tau$$

Results: synthetics

- $\varphi_k = \kappa_k |\cdot|$ (ℓ_1 -norm) where $\kappa_k > 0$
- $\widetilde{\rho}_{i}(h_{i})$: $||h_{i}||_{\ell_{1}}$, $||h_{i}||_{\ell_{2}}^{2}$ or $||h_{i}||_{\ell_{1,2}}$
- $\psi(z \mathbf{Rh} y)$: quadratic (Gaussian noise)

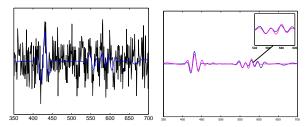


Figure 24: Simulated results with heavy noise.

Results: potential on real data

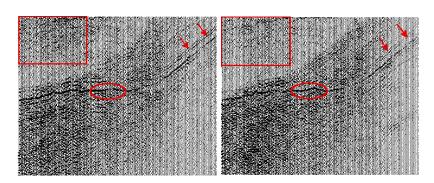


Figure 25: (a) Unary filters (b) Proximal FIR filters.

Conclusions

Take-away messages:

- Practical side
 - Competitive with more standard 2D processing
 - Very fast (unary part): industrial integration
- Technical side
 - Lots of choices, insights from 1D or 1.5D
 - Non-stationary, wavelet-based, adaptive multiple filtering
 - Take good care of cascaded processing
- Present work
 - Going 2D: crucial choices on redundancy, directionality

Context

Now what's next: curvelets, shearlets, dual-tree complex wavelets?

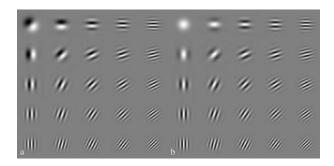


Figure 26: From T. Lee (TPAMI-1996): 2D Gabor filters (odd and even) or Weyl-Heisenberg coherent states

Context

References

- Ventosa, S., S. Le Roy, I. Huard, A. Pica, H. Rabeson, P. Ricarte, and L. Duval, 2012, Adaptive multiple subtraction with wavelet-based complex unary Wiener filters: Geophysics, 77. V183-V192; http://arxiv.org/abs/1108.4674
- Pham, M. Q., C. Chaux, L. Duval, L. and J.-C. Pesquet, 2014, A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal: IEEE Trans. Signal Process., accepted; http://tinyurl.com/proximal-multiple
- Jacques, L., L. Duval, C. Chaux, and G. Peyré, 2011, A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity: Signal Process., 91, 2699-2730; http://arxiv.org/abs/1101.5320

