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ABSTRACT

This tutorial paper1 aims at summarizing some problems,
ranging from analytical chemistry to novel chemical sensors,
that can be addressed with classical or advanced methods
of signal and image processing. We gather them under the
denomination of “chemical sensing”. It is meant to introduce
the special session “Signal Processing for Chemical Sens-
ing” with a large overview of issues which have been and
remain to be addressed in this application domain, includ-
ing chemical analysis leading to PARAFAC/tensor methods,
hyper spectral imaging, ion-sensitive sensors, artificial nose,
chromatography, mass spectrometry, etc. For enlarging and
illustrating the points of view of this tutorial, the invited pa-
pers of the session consider other applications (NMR, Raman
spectroscopy, recognition of explosive compounds, etc.) ad-
dressed by various methods, e.g. source separation, Bayesian,
and exploiting typical chemical signal priors like positivity,
linearity, unit-concentration or sparsity.

Index Terms— Chemical analysis, Chemical sensors,
Gas chromatography, Signal processing algorithms, Spec-
troscopy

1. INTRODUCTION: AIMS AND MOTIVATIONS

With the advent of more affordable, higher resolution or novel
data acquisition techniques, chemical analysis has been us-
ing, progressively, more advanced signal and image process-
ing tools.

Since analytical chemistry (AC) has numerous applica-
tions in forensics, bioinformatics, clinical, environmental and
material analysis, investigating how signal processing (SP)
methods, thereafter encompassing image analysis as well, can
be used for solving analytical chemistry problems will be in-
teresting in many application domains. Indeed, both special-
ties (AC and SP) share very similar values of best practice in
carrying out identifications and comprehensive characteriza-
tions, albethey of chemical samples for AC or of numerical
data for SP.

1This work has been partly supported by the European project ERC-2012-
AdG-320684-CHESS.

Fig. 1. Typical chemical signals. Left: 1D gas chromatogram.
Right: resulting 2D GC×GC chromatogram. This example
illustrates positivity and sparsity properties, usual in chemical
data.

For instance, the chemical analyst approach to performing
an analysis, resorting from different preparation steps to dif-
ferent analytical techniques (Section 2.1), resembles the man-
ner employed in traditional signal or image analysis. As a
consequence, a better interaction between both communities
is possible and desirable.

Interactions between SP and AC communities would be
useful in providing new types of data and constraints and in
solving AC related issues [1]. Conversely, interactions can
also be beneficial for the SP community, with opportunities
in less known tools. As a first example, it is clear that the well
known PARAFAC approach [2] played an important role in
SP: it has been (and still is) a source of inspiration for source
separation methods and other representations of complex
multi-way data based on tensor decomposition. A second
example is the Savitsky-Golay filter, whose original work
[3] is one of the most cited papers in analytical chemistry
[4]. The design of theses filters make them shape-preserving
smoothers, better suited to denoising empirical data com-
prised of sum of round-shaped peaks than standard averaging
or frequency designed filters. Interestingly, even if it falls in
the category of least-squares, polynomial interpolating filters,
it is barely present in signal processing textbooks and rarely
known from signal processing specialists [5]. The recent
tutorial paper [6] might renew the interest of the community
on this specific topic.

We similarly aim at bringing less known chemical sensing



issues and references to the signal processing community.
The paper, obviously far from exhaustive, provides a selec-
tion of key contributions to the field of analytical chemistry,
whose modus operandi bears some similarities with those
in signal processing, as described in Section 2, along with a
description of the main types of data encountered and some
of the needs in routine chemical analysis. Section 3 forms
the core of the tutorial. It first reminds prior seminal works,
followed by a decomposition of the main issues in SP-related
topics. Some conclusions are provided in Section 4.

2. ANALYTICAL CHEMISTRY AND CHEMICAL
SIGNALS: SCOPE AND NEEDS

2.1. Scope, definitions and field of interest

Analytical chemistry resorts to qualitative (detection: what
compound is present?) and quantitative (estimation: how
much of it?) analyses, to study physical and chemical proper-
ties of compounds and mixtures of natural or artificial ma-
terials. It relies on many chemico-physical interactions of
atoms and molecules. Its specificity, with respect to routine
chemical analysis, resides in the continuous improvement of
analytical methods, experimental designs and chemometrics
[7], i.e. “the art of extracting chemically relevant informa-
tion from data produced in chemical experiments”. The latter
essentially borrows methods from multivariate analysis and
statistics.

A typical one-dimensional chemical signal is depicted in
Figure 1-left. The observed amplitude at each location is gen-
erally considered as related to the proportion of a certain com-
ponent. Since some uncertainty and variability exist, the pro-
portion of an elementary component is generally distributed
around an average location on the ordinal axis, so as to form
a “peak”. Different peak parametric models [8, p. 97 sq.],
for instance Gaussian or Lorentzian, have been developed to
address different types of observed separation processes or
analyzed components. The ordinal variable is not restricted
to time or space. It represents a physico-chemical property
which realizes the separation between elementary compo-
nents, e.g. boiling point (temperature), migration (molecular
mass), sensitivity to electro-magnetic fields (mass-to-charge
ratio), etc. When considering additional instrumental drift
and disturbances, the resulting chemical signal, often termed
“spectrum”, is composed, at first order, of a linear combi-
nation of a sum of peaks of different amplitudes (more of
less overlapped, or “co-eluted2”), a slow-varying, sometimes
monotone, baseline (or background) representing the lower
limit of peak amplitude quantification, and noise. Hence,
the most simple model is a linear mixture. Globally, those
signals somehow differ from SP standards, as they rarely ex-

2Coelution refers to the superposition, at the same location, of two or
more elementary components, potentially convolved with the instrument re-
sponse.

hibit either jumps, step edges or oscillatory behavior. Hence,
they deserve a set of analysis tools that drift away from
usual derivative-based contour detectors, frequency-domain
filters or multi-scale detectors. From a signal processing per-
spective, they often enjoy additional useful properties. For
instance, when considering concentrations of analytes in a
mixture, elementary spectra should be non-negative and have
unit-concentration, taking into account the stoichiometric
constants of balanced chemical equations (conservation of
mass, charge or atoms). Recently, sparsity constraints on
chemical species in a reaction have come into play.

Among the most common separation techniques, one dis-
tinguishes for instance: gas, liquid or ion chromatography;
gel electrophoresis (2D-PAGE, 2D-DIGE); diode array de-
tectors; ultraviolet (UV), Infrared (IR, near and far: NIR,
FIR), Raman or Nuclear Magnetic Resonance (NMR) spec-
troscopy, X-ray diffraction or absorption, mass spectrometry
(MS); ion-selective electrodes (ISE), etc. [9, 10]. Each of
the aforementioned techniques deserves a closer inspection to
devise chemically sound constraints, which may be employed
in restoration problems. Analytical chemistry also resorts to
image acquisition and processing, e.g. with scanning or trans-
mission electron microscopy (SEM, TEM). We refer to [9, 11]
for details.

2.2. On needs and trends in chemical signal analysis

Due to the need of routine chemical analysis and testing for
quantities of data from high-throughput instruments, it is very
important that processing techniques have a limited number
of parameters, with semi-automatic or at least intuitive deter-
mination. Since chemical analyses are often made relative,
the repeatability of signal processing is a very important fea-
ture. Despite the simplistic linear model described above, an-
alytical methods possess different specificities and pose dis-
tinct challenges. As the studied chemical compounds steadily
become more complex, their separation into elementary com-
ponents is often difficult with a single technique. Even with
instrumental resolution increases (e.g., the capability to out-
put finer peaks, with respect to the full width at half maxi-
mum), the need for a separation based on two or more chem-
ical properties (e.g. boiling point and electronic structure)
has emerged. This has given birth to hyphenated techniques,
combining some of the aforementioned techniques in pair,
triple, etc. For instance, two-dimensional or comprehensive
chromatography (GC×GC, Fig. 1-right) [12, 13] generates a
two-dimensional signal with the above features. The result-
ing images are far different from the standard cartoon/texture
model, and promote innovative methods [14]. Hyphenation
may be extended to higher dimensions [15], providing an en-
hancement of resolution at the costs of more drastic data man-
agement problems.

Despite the variety of techniques, AC methods include
common concepts of separation, detection, identification and



quantification (here of atomic, molecular, and ionic species).
Such broad concepts are cores in signal and image processing
as well, albethey with different meanings. Due to the close re-
lationship between both disciplines, we choose to decompose
chemical sensing issues in SP related fields, better suited to
the target audience.

3. SIGNAL PROCESSING ISSUES, BY FIELDS

3.1. Historical mentions and early works

According to [4], “the dawn of the computer-controlled ana-
lytical instrument can be traced to” the Savitzky-Golay paper
[3]. Gottschalk [16] relates analytical chemistry to infor-
mation theory and considers the materials analyzed as more
generic “systems”. The late professor J. B. Phillips, who
fathered the comprehensive chromatography evoked in 2.1,
considers that “It is no longer possible to understand the
chemistry without considering signal processing [...] as a
whole” [17]. This paper may have been overlooked, or at
least undercited. Other insightful considerations on signal
processing interplay with analytical chemistry may be found
in [8, 18].

3.2. An overview of major fields of application

Signal processing problems are recurrent in many stages of
chemical sensing, from low-level applications, such as data
acquisition and compression, to high-level tasks, such as fea-
ture extraction and identification. A brief look at the liter-
ature shows that, in addition to considering classical signal
processing methods, research in chemical sensing has been
also resorting to advanced techniques.

In the sequel, we aim at providing more information on
some problems in chemical sensing that, in our opinion, could
be of interest to the signal processing community. Of course,
our survey is by no means exhaustive, due to the large number
of works on this subject, and many relevant references are
missing in our short survey. Still, we believe that the selected
topics, in addition to the invited papers of the special session,
may provide a nice view for researchers interested in joining
this exciting area.

3.3. Acquisition and compression related problems

Data acquisition is a fundamental problem in chemistry.
While classical techniques can be considered for some chem-
ical data, there are several situations in which acquisition
is a demanding step. This is the case in SEM images, for
which reducing the acquisition time is a crucial need. In [19],
the author proposes an approach based on smoothing that
reduces the acquisition time by about one-third, yet ensuring
a good signal-to-noise ratio. Efforts on acquisition methods
have also been conducted for different chemical analyzes,
involving for instance sampling of parametrized peaks [20],

adapted to peak-like, non harmonic signals, or detector mod-
ulation [21], akin to an hybrid between multiplexing and
time-frequency representations.

Another task that has been focus of many works is data
compression. The need for compression of chemical data
arises in techniques for which one must store large datasets
that are used as reference. Among compression techniques,
the ones based on the wavelet transform are the most adopted
solutions in chemistry [22, 23] — these methods were applied
in ion mobility spectrometry (IMS) sensors, MS, IR and NMR
spectroscopy.

Finally, it worth mentioning the recent works on compres-
sive sensing (CS) for chemical data. Briefly speaking, CS can
be seen as a paradigm in which acquisition and compression
are conducted at the same time. By exploiting the fact that the
desired signal is sparse in a given domain — and by relying
on a sort of random acquisition — CS methods are able to re-
construct the desired signal from a number of samples lower
than the one predicted by the Nyquist-Shannon theorem [24].

In analytical chemistry, CS methods have been used, for
instance, in NMR spectroscopy [25, 26, 27]. In these works,
the application of CS methods provides relevant gains in
terms of acquisition time.

3.4. Background estimation and filtering

In the basic signal formation model given in Section 2.1, two
disturbances affect the desired signal considered as a linear
combination of elementary peaks: an analytical background
or baseline, accounting for slow-varying instrumental pertur-
bations, and noise. Both should be remediated without harm-
ing peak shapes. In [28], the baseline is defined as “the por-
tion of a detector record resulting from only eluant or carrier
gas emerging from the column”. Broader definitions exits, en-
compassing more deterministic components such as tempera-
ture fluctuations or even small peaks that cannot be easily dis-
tinguished from a notional or arbitrary zero level [29], serv-
ing as a reference for peak properties quantification (height,
area). Removing a slow-varying, potentially monotone, trend
(Fig. 1-left) in a signal is generally an ill-posed posed prob-
lem, despite its apparent simplicity. The need for almost auto-
matic methods is still present, after many attempts using least-
square fits, wavelet preprocessing, robust or asymmetric error
regression or factor analysis methods [30, 31, 32, 33, 34].

Given the importance of Savitzky and Golay filters, de-
noising and filtering have inspired many works in analytical
chemistry, for instance [35, 36]. We refer to [11, vol. 2] for
a broad overview of both background removal and filtering,
while [37] provide a focus on the use of wavelet transforms.

3.5. Sensor array processing and signal separation

In analytical chemistry, a major issue is the lack of selectivity
of some sensors. Large efforts have been undertaken to de-



velop new materials providing more selective sensors. How-
ever, despite the good results provided by this approach, it
usually leads to expensive solutions. An interesting alterna-
tive to overcome this problem is to resort to sensing mecha-
nisms based on diversity. For instance, instead of considering
only one sensor, data can be acquired by an array composed
of sensors responding differently to a given analyte. Then,
the acquired data can be treated by signal processing meth-
ods with the aim of retrieving the desired information. This
approach, which will be referred to as Smart Sensor Arrays
(SSA), is usually adopted in the estimation of ionic concen-
tration and gas analysis [38].

Since the sensors within the array are not necessarily se-
lective in the SSA approach, the acquired signals correspond
to mixtures of the desired signals, e.g., the temporal evolution
of the activities of different ions. Therefore, the problem here
is to retrieve the original signals (sources) from a set of mix-
tures of these sources. If one has access to a set of training (or
calibration) data, this problem can be solved by multivariate
regression methods. On the other hand, if only the mixtures
are available, one can use blind source separation methods
(BSS) [39]. An interesting feature of blind (or unsupervised)
methods in chemistry is the possibility of avoiding (or simpli-
fying) calibration stages, which are usually time demanding.

BSS methods have been providing interesting results in
SSAs composed of potentiometric sensors used for measuring
ionic activities. The main challenge in this application is due
to the fact that potentiometric sensors are, as a rule, nonlinear
devices [40]. As a result, the mixing processes are nonlinear,
thus requiring advanced BSS methods. For instance, in [41],
nonlinear BSS techniques based on Independent Component
Analysis (ICA) were proposed for dealing with the mixing
model that stems from potentiometric sensors. In [42], ICA
methods were also applied to process the data acquired by ar-
rays composed of tin oxide gas sensors, whose resulting mix-
ing model is nonlinear, too. Despite the good results provided
by ICA in these applications, it has a major limitation: ICA is
based on the source statistical independence. Unfortunately,
many chemical sources are clearly dependent. Consequently,
other priors on sources have to be used, such as positivity or
sparsity.

In order to deal with dependent sources in potentiomet-
ric arrays, [43] proposed a Bayesian BSS method. Since this
approach is not based on source statistical independence and
can easily take into account positivity constraints as statisti-
cal priors, it may provide good results even when the sources
are highly correlated — this fact was illustrated in an ac-
tual dataset acquired by an array of ion-selective electrodes3.
Bayesian BSS methods were also applied to separate mix-
tures of spectra obtained from NIR spectroscopy [45]. Again,
the sources (the spectra of cyclopentane, cyclohexane, and
n-pentane) were dependent, which made difficult the applica-
tion of ICA-based solutions.

3The dataset used in this work is publicly available [44].

Beyond SSA processing, source separation methods have
been successfully used for solving many other issues in chem-
ical engineering, e.g. separation of molecules in mass spec-
trograms, or spectral unmixing in hyperspectral imaging, etc.

3.6. Matching, identification, and learning

Higher-level data processing tasks, such as matching and pat-
tern recognition, are also common in chemical applications.
A typical example in this context is the problem of peak
matching in chromatography. The output of this laboratory
technique comprises a set of chromatograms, which in turn
are composed of peaks. Ideally, different material samples
containing the same components with different proportions
should displays peaks at the same positions on the ordinal
axis. However, due to several experiments issues, one may
observe shifts between these peaks, which may be poten-
tially harmful for subsequent analyzes. Most of solutions to
peak alignment are based on time warping (see [46] for a
comparison between three matching methods).

Another example of chemical systems using high-level
data processing can be found in the electronic noses [47] and
tongues [48]. These systems are mainly adopted to perform
automatic recognition of chemical elements. They are based
on several signal processing stages. First, the signals acquired
by the array are pre-processed with the aim of mitigating im-
pairments such as sensor drift. Second, feature extraction is
performed for (1) reducing the dimensionality of the data, and
(2) extracting the relevant information that will feed the au-
tomatic classifier. Feature extraction methods used in elec-
tronic noses and tongues include principal component analy-
sis (PCA) and self-organized maps (SOM) [49]. The last step
is the classification, which can be carried out by artificial neu-
ral networks such as the multilayer perceptron, support vector
machines, and Bayesian classifiers [47].

4. CONCLUSIONS

Since the aim of the present work is to introduce the special
session entitled “Signal Processing for Chemical Sensing”,
our major goal is to bring some relevant problems to the sig-
nal processing community. Of course, possible interaction be-
tween the two domains is very wide, and the paper cannot be
exhaustive. Additional topics include e.g. statistical inference
fo simulating large scale modelular dynamics, or estimation
of chemical concentration in bioreactors, etc. Conversely, in
[50], authors suggest using chemical systems for doing signal
processing tasks. Due to limited space, additional references
are available [51].
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