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On echoes and morphing
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Figure 1:... and adaptive subtraction
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Issues in geophysical signal processing
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Figure 2: Seismic data acquisition and wave elds.
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Issues in geophysical signal processing
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Figure 3: Seismic data: aspect & dimensions (time, o set)
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Issues in geophysical signal processing

Re ection seismology:

seismic waves propagate through the subsurface medium
seismic traces: seismic wave elds recorded at the surface
primary re ections: geological interfaces
many types of distortions/disturbances
processing goal: extract relevant information for seismata
led to important signal processing tools:
“1-promoted deconvolution (Claerbout, 1973)
wavelets (Morlet, 1975)
exabytes {0° gigabytes) of incoming data
need for fast, scalable algorithms
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Multiple re ections and models

Figure 4: Seismic data acquisition: focus on multiple re ections

7133 (ifPgmie
N



Multiple Itering
0®00000

8/33

Multiple re ections and models

Multiple re ections:
seismic waves bouncing between layers
one of the most severe types of interferences
obscure deep re ection layers
high cross-correlation between primarigy @nd multiples (n)

additional incoherent noisen|
d(t) = p(t) + m(t)+

model-based multiple attenuationxy(t), x2(t), x3(t)
how to use approximate models?
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Multiple re ections and models
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Figure 5: Multiple re ections: data traced and modelx;
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Multiple re ections and models

Multiple ltering:

multiple prediction (correlation, wave equation) has liations
models are not accurate

m(t)  a(®xk(t «(1)?

standard: identify, apply a matching ler, subtract
primaries and multiples are not (fully) uncorrelated

same (seismic) source

similarities/dissimilarities in time

similarities/dissimilarities in frequency
variations in amplitude, waveform, delay
issues in matching lter length:

short lters and windows: local details
long lters and windows: large scale e ects
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Multiple re ections and models
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Figure 6: Multiple re ections: data trace, model and adaptation
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Multiple re ections and models
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Figure 7: Multiple re ections: data trace and models, 2D version
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Multiple re ections and models

A long history of multiple Itering methods
general idea: combine adaptive Itering and transforms

data transforms: Fourier, Radon
enhance the di erences between primaries, multiples and neis
reinforce the adaptive ltering capacity

intrication with adaptive ltering?
might be complicated (think about inverse transform)
Main idea here:
exploit the non-stationary in the data
naturally allow both large scale & local detail matching
work in a complex domain: amplitude and phase representation
emulate an analytic signal representation (Hilbert transform

) Complex, continuous wavelets
intermediate complexity in the transform
hyper-simplicity in the (unary) adaptive ltering
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Continuous wavelets
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Figure 8: Complex wavelets at two di erent scales - 1
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Continuous wavelets
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Figure 9: Complex wavelets at two di erent scales - 2
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Continuous wavelets

Transformation group:
a ne = translation () + dilation (a)
Basis functions:

a(t) = 191—5 —

a> 1: dilation

a < 1: contraction

1=" a: energy normalization

multiresolution (vs monoresolution in STFT)
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Continuous wavelets

De nition Z
Cs(;a)= s(t) ‘a (t)dt

Vector interpretation
Cs(;a)= hs(t); a(t)i

projection onto time-scale atoms (vs time-frequency)
Redundant transform: ! a \samples"
Parseval-like formula

Cs(;a)= X (f); a(f)i

) time-scale domain operations! (cf. Fourier)
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Continuous wavelets
Introductory example

Data Real part

Modulus Imaginary part

Figure 10:Noisy chirp mixture in time-scale & sampling
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Continuous wavelets
Noise spread & feature simpli cation
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Figure 11:Noisy chirp mixture in time-scale: scale, zoomed wiggle
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Continuous wavelets
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Figure 12:Which morphing is easier: time or time-scale?
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Continuous wavelets

Inversion with another wavelet
27
duda

s(t) = Cs(u; @) u;a(t)?

time-scale domain processing! (back to the signal)

)

Scalogram
jCs(t; @)j?

Energy conversation
2z dtda
E = JCS(t, a)jz?

Parseval-like formula
27
dtda

hs1; soi = Cs, (2)Cq, (t; a)?

21/33

H €Energies
(ifPsmze
\



Continuous wavelets
00000000 e

22/33

Continuous wavelets

Wavelet existence: admissibility criterion

Z.1 Zo p
ocan= PPOIO, LT PO
0 1

d <1
generally normalized to 1
Induces band-pass property:

necessary conditionj: (0) j = 0, or zero-average shape
amplitude spectrum neglectable w.r.jvj at in nity

examples: Morlet-Gabor (non. adm.)
1 12 o
(t) = P:ZG 22g 270t

2
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Discretization, redundancy and unary lters

Being practical again: deal with discrete signals
Can one sample in time-scale (CWT):
z

Cia)= s 2(d 0= p

a

with g = Cs(kbpal);ah); (j;k) 2 Z and still be able to
recovers(t)?

Result 1 (Daubechies, 1984): there exists a wavelet frame if
aghy < C, (depending on ). A frame is generally redundant

Result 2 (Meyer, 1985): there exist an orthonormal basis dor
specic (non trivial, Meyer wavelet) angg =2 Iy =1
Now: how to choose the practical level of redundancy?
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Discretization, redundancy and unary lters
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Figure 13:Redundancy selection with variable noise experiments
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Discretization, redundancy and unary lters

Complex Morlet wavelet:
()= e otg =21 - central frequency
Discretized timer, octavej, voicev:

1 nT r2by
P 2+ V=V

” [n] = ; bg: sampling at scale zero

Time-scale analysis:

X
d=dy = dn}: Y] = dn] 5[]
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Discretization, redundancy and unary lters

2000 2000
o 1500 150
K k1
3 1000 & 100
500 500
o o
34 a6 s 3 a4 a5
Time () “Time ()
2000 2000
o 00 o 150
& 000 & 100
500 500
o o
B 36 B 2 a4 s
Time (s) Time (s)

Figure 14:Morlet wavelet scalograms, data and models

Take advantage from the closest similarity/dissimilarity

remember the wiggle: on sliding windows, at each scale, a

single complex coe cient compensates amplitude and phase
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Discretization, redundancy and unary lters

Windowed adaptation: complex,,: compensates local
delay/amplitude mismatches:

. X 2
aopt = argmin  d ay Xk
faxg(k2K) K

Vector Wiener equations for complex signals:
X
hd; Xmi = A X y; Xmi

Time-scale synthesis:

X X
din] = dY; & In]

ro v
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Results
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Figure 15:Wavelet scalograms, data and models, after unary adaptation
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Figure 16:Wavelet scalograms, data and models
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Results
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Figure 17:Original data
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Results
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Figure 18:Filtered data
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Conclusions

Take-away messages:
Technical side
Take good care of cascaded processing
Non-stationary, wavelet-based, adaptive multiple Itering
\Complex" wavelet transform + simple one-tap (unary) lter
Redundancy selection: noise robustness and processing speed
Smooth adaptation to adaptive joint multiple model Iterip

Practical side

Industrial integration
Competitive with more standard processing
Alternative results: less sensitive to random noises

Future work: better integrate incoherent noise
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