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On echoes and morphing
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Figure 1: ... and adaptive subtraction
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Agenda

1. Issues in geophysical signal processing
2. Problem: multiple re
ections (echoes)

� adaptive �ltering with approximate models

3. Complex, continuous wavelets
� and how they (may) simplify adaptive �ltering

4. Discretization, redundancy and unary �lters (morphing)
� being practical: back to the discrete world

5. Results

6. Conclusion
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Issues in geophysical signal processing

Figure 2: Seismic data acquisition and wave �elds.
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Issues in geophysical signal processing
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Figure 3: Seismic data: aspect & dimensions (time, o�set)
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Issues in geophysical signal processing

Re
ection seismology:

� seismic waves propagate through the subsurface medium
� seismic traces: seismic wave �elds recorded at the surface

� primary re
ections: geological interfaces
� many types of distortions/disturbances

� processing goal: extract relevant information for seismicdata
� led to important signal processing tools:

� `1-promoted deconvolution (Claerbout, 1973)
� wavelets (Morlet, 1975)

� exabytes (106 gigabytes) of incoming data

� need for fast, scalable algorithms
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Multiple re
ections and models

Figure 4: Seismic data acquisition: focus on multiple re
ections
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Multiple re
ections and models

Multiple re
ections:

� seismic waves bouncing between layers

� one of the most severe types of interferences

� obscure deep re
ection layers

� high cross-correlation between primaries (p) and multiples (m)

� additional incoherent noise (n)
� d(t) = p(t) + m(t)+ n(t)

� model-based multiple attenuation:x1(t), x2(t), x3(t)

� how to use approximate models?
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Multiple re
ections and models
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Figure 5: Multiple re
ections: data traced and modelx1
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Multiple re
ections and models

Multiple �ltering:

� multiple prediction (correlation, wave equation) has limitations
� models are not accurate

� m(t) � ak (t)xk (t � � k (t))?
� standard: identify, apply a matching �ler, subtract

� primaries and multiples are not (fully) uncorrelated
� same (seismic) source
� similarities/dissimilarities in time
� similarities/dissimilarities in frequency

� variations in amplitude, waveform, delay
� issues in matching �lter length:

� short �lters and windows: local details
� long �lters and windows: large scale e�ects
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Multiple re
ections and models
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Figure 6: Multiple re
ections: data trace, model and adaptation
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Multiple re
ections and models
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Figure 7: Multiple re
ections: data trace and models, 2D version
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Multiple re
ections and models
� A long history of multiple �ltering methods

� general idea: combine adaptive �ltering and transforms
� data transforms: Fourier, Radon
� enhance the di�erences between primaries, multiples and noise
� reinforce the adaptive �ltering capacity

� intrication with adaptive �ltering?
� might be complicated (think about inverse transform)

� Main idea here:
� exploit the non-stationary in the data
� naturally allow both large scale & local detail matching
� work in a complex domain: amplitude and phase representation
� emulate an analytic signal representation (Hilbert transform)

) Complex, continuous wavelets
� intermediate complexity in the transform
� hyper-simplicity in the (unary) adaptive �ltering

13/33



Context Multiple �ltering Continuous wavelets Discret., redundancy, unary �lters Results & conclusion

14/33

Continuous wavelets
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Figure 8: Complex wavelets at two di�erent scales - 1
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Continuous wavelets
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Figure 9: Complex wavelets at two di�erent scales - 2
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Continuous wavelets

� Transformation group:

a�ne = translation ( � ) + dilation ( a)

� Basis functions:

 �;a (t) =
1

p
a

 
�

t � �
a

�

� a > 1: dilation
� a < 1: contraction
� 1=

p
a: energy normalization

� multiresolution (vs monoresolution in STFT)

 �;a (t) FT�!
p

a	( af )e� {2�f �
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Continuous wavelets

� De�nition

Cs(�; a ) =
Z

s(t) �
�;a (t)dt

� Vector interpretation

Cs(�; a ) = hs(t);  �;a (t)i

projection onto time-scale atoms (vs time-frequency)

� Redundant transform:� ! � � a \samples"

� Parseval-like formula

Cs(�; a ) = hX (f ); 	 �;a (f )i

) time-scale domain operations! (cf. Fourier)
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Continuous wavelets
Introductory example

Data Real part

Imaginary partModulus

Figure 10:Noisy chirp mixture in time-scale & sampling
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Continuous wavelets
Noise spread & feature simpli�cation
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Figure 11:Noisy chirp mixture in time-scale: scale, zoomed wiggle
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Continuous wavelets
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Figure 12:Which morphing is easier: time or time-scale?
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Continuous wavelets
� Inversion with another wavelet�

s(t) =
ZZ

Cs(u; a)� u;a (t)
duda

a2

) time-scale domain processing! (back to the signal)
� Scalogram

jCs(t; a)j2

� Energy conversation

E =
ZZ

jCs(t; a)j2
dtda
a2

� Parseval-like formula

hs1; s2i =
ZZ

Cs1 (t; a)C �
s2

(t; a)
dtda
a2
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Continuous wavelets

� Wavelet existence: admissibility criterion

0 < A h =
Z + 1

0

b� � (� )	( C)
�

d� =
Z 0

�1

b� � (� )	( � )
�

d� < 1

generally normalized to 1
� Induces band-pass property:

� necessary condition:j�(0) j = 0 , or zero-average shape
� amplitude spectrum neglectable w.r.t.jvj at in�nity

� examples: Morlet-Gabor (non. adm.)

 (t) =
1

p
2�� 2

e� t 2

2� 2 e� {2�f 0 t
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Discretization, redundancy and unary �lters

Being practical again: deal with discrete signals

� Can one sample in time-scale (CWT):

Cs(�; a ) =
Z

s(t) �
�;a (t)dt;  �;a (t) =

1
p

a
 

�
t � �

a

�

with cj;k = Cs(kb0aj
0; aj

0); (j; k ) 2 Z and still be able to
recovers(t)?

� Result 1 (Daubechies, 1984): there exists a wavelet frame if
a0b0 < C , (depending on ). A frame is generally redundant

� Result 2 (Meyer, 1985): there exist an orthonormal basis fora
speci�c  (non trivial, Meyer wavelet) anda0 = 2 b0 = 1

Now: how to choose the practical level of redundancy?

23/33



Context Multiple �ltering Continuous wavelets Discret., redundancy, unary �lters Results & conclusion

24/33

Discretization, redundancy and unary �lters
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Figure 13:Redundancy selection with variable noise experiments
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Discretization, redundancy and unary �lters

� Complex Morlet wavelet:

 (t) = � � 1=4e� i! 0 t e� t2=2; ! 0: central frequency

� Discretized timer , octavej , voicev:

 v
r;j [n] =

1
p

2j + v=V
 

�
nT � r 2j b0

2j + v=V

�
; b0: sampling at scale zero

� Time-scale analysis:

d = dv
r;j =



d[n];  v

r;j [n]
�

=
X

n

d[n] v
r;j [n]
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Discretization, redundancy and unary �lters
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Figure 14:Morlet wavelet scalograms, data and models

Take advantage from the closest similarity/dissimilarity:
� remember the wiggle: on sliding windows, at each scale, a

single complex coe�cient compensates amplitude and phase
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Discretization, redundancy and unary �lters
� Windowed adaptation: complexaopt compensates local

delay/amplitude mismatches:

aopt = arg min
f ak g(k2 K )











d �

X

k

akxk












2

� Vector Wiener equations for complex signals:

hd; xm i =
X

k

ak hxk ; xm i

� Time-scale synthesis:

d̂[n] =
X

r

X

j;v

d̂v
r;j

e v
r;j [n]
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Results
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Figure 15:Wavelet scalograms, data and models, after unary adaptation
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Results (reminders)
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Figure 16:Wavelet scalograms, data and models
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Results
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Figure 17:Original data
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Figure 18:Filtered data
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Conclusions

Take-away messages:
� Technical side

� Take good care of cascaded processing
� Non-stationary, wavelet-based, adaptive multiple �ltering
� \Complex" wavelet transform + simple one-tap (unary) �lter
� Redundancy selection: noise robustness and processing speed
� Smooth adaptation to adaptive joint multiple model �ltering

� Practical side
� Industrial integration
� Competitive with more standard processing
� Alternative results: less sensitive to random noises

� Future work: better integrate incoherent noise
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