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On echoes and morphing
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Figure 1: ... and adaptive subtraction

2/33



Context Multiple filtering Continuous wavelets Discret., redundancy, unary filters Results & conclusion

3/33

Agenda

1. Issues in geophysical signal processing

2. Problem: multiple reflections (echoes)
• adaptive filtering with approximate models

3. Complex, continuous wavelets
• and how they (may) simplify adaptive filtering

4. Discretization, redundancy and unary filters (morphing)
• being practical: back to the discrete world

5. Results

6. Conclusion
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Issues in geophysical signal processing

Figure 2: Seismic data acquisition and wave fields.
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Issues in geophysical signal processing
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Figure 3: Seismic data: aspect & dimensions (time, offset)
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Issues in geophysical signal processing

Reflection seismology:

• seismic waves propagate through the subsurface medium

• seismic traces: seismic wave fields recorded at the surface
• primary reflections: geological interfaces
• many types of distortions/disturbances

• processing goal: extract relevant information for seismic data

• led to important signal processing tools:
• ℓ1-promoted deconvolution (Claerbout, 1973)
• wavelets (Morlet, 1975)

• exabytes (106 gigabytes) of incoming data

• need for fast, scalable algorithms
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Multiple reflections and models

Figure 4: Seismic data acquisition: focus on multiple reflections
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Multiple reflections and models

Multiple reflections:

• seismic waves bouncing between layers

• one of the most severe types of interferences

• obscure deep reflection layers

• high cross-correlation between primaries (p) and multiples (m)

• additional incoherent noise (n)

• d(t) = p(t) +m(t)+n(t)
• model-based multiple attenuation: x1(t), x2(t), x3(t)

• how to use approximate models?
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Multiple reflections and models
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Figure 5: Multiple reflections: data trace d and model x1
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Multiple reflections and models

Multiple filtering:

• multiple prediction (correlation, wave equation) has limitations

• models are not accurate
• m(t) ≈ ak(t)xk(t− τk(t))?
• standard: identify, apply a matching filer, subtract

• primaries and multiples are not (fully) uncorrelated
• same (seismic) source
• similarities/dissimilarities in time
• similarities/dissimilarities in frequency

• variations in amplitude, waveform, delay

• issues in matching filter length:
• short filters and windows: local details
• long filters and windows: large scale effects
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Multiple reflections and models
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Figure 6: Multiple reflections: data trace, model and adaptation
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Multiple reflections and models
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Figure 7: Multiple reflections: data trace and models, 2D version
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Multiple reflections and models

• A long history of multiple filtering methods
• general idea: combine adaptive filtering and transforms

• data transforms: Fourier, Radon
• enhance the differences between primaries, multiples and noise
• reinforce the adaptive filtering capacity

• intrication with adaptive filtering?
• might be complicated (think about inverse transform)

• Main idea here:
• exploit the non-stationary in the data
• naturally allow both large scale & local detail matching
• work in a complex domain: amplitude and phase representation
• emulate an analytic signal representation (Hilbert transform)

⇒ Complex, continuous wavelets

• intermediate complexity in the transform

• hyper-simplicity in the (unary) adaptive filtering
13/33
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Continuous wavelets
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Figure 8: Complex wavelets at two different scales - 1
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Continuous wavelets
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Figure 9: Complex wavelets at two different scales - 2
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Continuous wavelets

• Transformation group:

affine = translation (τ) + dilation (a)

• Basis functions:

ψτ,a(t) =
1√
a
ψ

(
t− τ

a

)

• a > 1: dilation
• a < 1: contraction
• 1/

√
a: energy normalization

• multiresolution (vs monoresolution in STFT)

ψτ,a(t)
FT−→

√
aΨ(af)e−ı2πfτ
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Continuous wavelets

• Definition

Cs(τ, a) =

∫
s(t)ψ∗

τ,a(t)dt

• Vector interpretation

Cs(τ, a) = 〈s(t), ψτ,a(t)〉

projection onto time-scale atoms (vs time-frequency)

• Redundant transform: τ → τ × a “samples”

• Parseval-like formula

Cs(τ, a) = 〈X(f),Ψτ,a(f)〉

⇒ time-scale domain operations! (cf. Fourier)
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Continuous wavelets
Introductory example
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Figure 10: Noisy chirp mixture in time-scale & sampling
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Continuous wavelets
Noise spread & feature simplification
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Figure 11: Noisy chirp mixture in time-scale: scale, zoomed wiggle
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Continuous wavelets
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Figure 12: Which morphing is easier: time or time-scale?
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Continuous wavelets

• Inversion with another wavelet φ

s(t) =

∫∫
Cs(u, a)φu,a(t)

duda

a2

⇒ time-scale domain processing! (back to the signal)

• Scalogram
|Cs(t, a)|2

• Energy conversation

E =

∫∫
|Cs(t, a)|2

dtda

a2

• Parseval-like formula

〈s1, s2〉 =
∫∫

Cs1(t, a)C
∗
s2(t, a)

dtda

a2
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Continuous wavelets

• Wavelet existence: admissibility criterion

0 < Ah =

∫ +∞

0

Φ̂∗(ν)Ψ(C)

ν
dν =

∫ 0

−∞

Φ̂∗(ν)Ψ(ν)

ν
dν <∞

generally normalized to 1

• Induces band-pass property:
• necessary condition: |Φ(0)| = 0, or zero-average shape
• amplitude spectrum neglectable w.r.t. |v| at infinity

• examples: Morlet-Gabor (non. adm.)

ψ(t) =
1√
2πσ2

e−
t
2

2σ2 e−ı2πf0t
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Discretization, redundancy and unary filters

Being practical again: deal with discrete signals

• Can one sample in time-scale (CWT):

Cs(τ, a) =

∫
s(t)ψ∗

τ,a(t)dt, ψτ,a(t) =
1√
a
ψ

(
t− τ

a

)

with cj,k = Cs(kb0a
j
0, a

j
0), (j, k) ∈ Z and still be able to

recover s(t)?

• Result 1 (Daubechies, 1984): there exists a wavelet frame if
a0b0 < C, (depending on ψ). A frame is generally redundant

• Result 2 (Meyer, 1985): there exist an orthonormal basis for a
specific ψ (non trivial, Meyer wavelet) and a0 = 2 b0 = 1

Now: how to choose the practical level of redundancy?
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Discretization, redundancy and unary filters
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Figure 13: Redundancy selection with variable noise experiments
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Discretization, redundancy and unary filters

• Complex Morlet wavelet:

ψ(t) = π−1/4e−iω0te−t2/2, ω0: central frequency

• Discretized time r, octave j, voice v:

ψv
r,j [n] =

1√
2j+v/V

ψ

(
nT − r2jb0

2j+v/V

)
, b0: sampling at scale zero

• Time-scale analysis:

d = dvr,j =
〈
d[n], ψv

r,j [n]
〉
=

∑

n

d[n]ψv
r,j [n]
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Discretization, redundancy and unary filters
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Figure 14: Morlet wavelet scalograms, data and models

Take advantage from the closest similarity/dissimilarity:

• remember the wiggle: on sliding windows, at each scale, a
single complex coefficient compensates amplitude and phase
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Discretization, redundancy and unary filters

• Windowed adaptation: complex aopt compensates local
delay/amplitude mismatches:

aopt = argmin
{ak}(k∈K)

∥∥∥∥∥d−
∑

k

akxk

∥∥∥∥∥

2

• Vector Wiener equations for complex signals:

〈d,xm〉 =
∑

k

ak 〈xk,xm〉

• Time-scale synthesis:

d̂[n] =
∑

r

∑

j,v

d̂vr,jψ̃
v
r,j [n]
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Results
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Figure 15: Wavelet scalograms, data and models, after unary adaptation
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Results (reminders)
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Figure 16: Wavelet scalograms, data and models
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Results
Shot number

T
im

e 
(s

)
120014001600180020002200

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Figure 17: Original data
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Figure 18: Filtered data
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Conclusions

Take-away messages:

• Technical side
• Take good care of cascaded processing
• Non-stationary, wavelet-based, adaptive multiple filtering
• “Complex” wavelet transform + simple one-tap (unary) filter
• Redundancy selection: noise robustness and processing speed
• Smooth adaptation to adaptive joint multiple model filtering

• Practical side
• Industrial integration
• Competitive with more standard processing
• Alternative results: less sensitive to random noises

• Future work: better integrate incoherent noise
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