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Abstract

We propose a method for uncoherent noise removal in geophysical data. The Multiple Wavelet
Stacking is based on a concurrent use of wavelet-based shrinkage and data and time-scale depen-
dent threshold choice. Since one singular wavelet does not match all the time-varying properties
of a signal, the simultaneous use of several wavelets is ableto lower some shrinkage shortcomings,
such as wavelet dependency, and to further reduce the residual noises.

Motivation and related works

Wavelet transforms have emerged as efficient tools for signal separation and noise filtering in
several geophysical applications. In heavy noise conditions, wavelet-based techniques generally
owe their robustness to their attractive time-scale properties. Wavelet based denoising, or wavelet
shrinkage [Miao and Cheadle, 1998], arises from the work of D. Donoho, based on the energy
compaction properties of these time-scale operators [Donoho, 1995]. With the most widely used
signal model [Ulrych et al., 1999], letR represent an actual geophysical record. It can be decom-
posed in an underlying signalS, and two noise componentsN



andN
r

, respectively coherent and
random:

R = S +N



+N

r

:

In the remaining of this paper, we will focus on the random noise componentN
r

. One useful prop-
erty is that the orthogonal transform of a white noise remains a white noise. Meanwhile, a coherent
signal is generally efficiently and sparsely represented after a wavelet transform. Donoho [1995]
demonstrated that for additive noise, a simple thresholding procedure would discard ”mainly”
noise coefficients. This result has been shown to be asymptotically near optimal for a wide class
of signals corrupted by gaussian white noise.

As stated in [Ioup and Ioup, 1998], ”the choice of the waveletand its associated scaling function are
very important to obtain the most useful wavelet transform”. As a result, a good wavelet should be
matched to the data properties. Unfortunately, discrete wavelets with fast algorithms are relatively
rare, and not trivialy related to geophysical signals. Moreover, we cannot expect optimal energy
compaction from a single wavelet domain, since most signalsare non-stationary and contain a
variety of frequency contents. Wavelet packets represent an enrichment of the projecting vectors.
This concept is generalized for instance in [Saito, 1994]. The signalS is estimated from a noisy
observation using a library of orthonormal bases, consisting in various wavelets, wavelet packets
and local trigonometrics bases. A procedure, based the information-theoretic Minimum Length
Description criterion, chooses the best base as a compromise between the fidelity (denoising) and
the efficiency of the signal estimation (compression). Bothgoals may be attained simultaneously
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[Chang et al., 2000]. Another related option consists in ”physical wavelets” that resemble typical
seismic signals or shapes, as proposed in [Wu et al., 1998, Zhang and Ulrych, 2002]. The latter
approach is generally considered as computationaly expensive.

In this work, we propose a denoising procedure based on concurrent denoising using several
wavelet bases. It yields a multiple wavelet-domain signal estimation with data driven parame-
ters. It is followed by stacking the multiple signal estimations. This algorithm is able to reduce
dependencies to the wavelet choice, as well as artifacts (for instance pseudo-Gibbs ringing) due to
each single wavelet estimation. Since the estimated denoised traces contain residual uncorrelated
quantization noise, the stack mimic a multi-fold estimation succeptible of further noise reduction.

Wavelets as multidimensional signals approximation tools

The discrete wavelet transform (DWT) represents a 1-D signal s(t) as a linear combination of
shifted versions of a low-pass scaling function�(t) and shifted and dilated copies of a band-
pass wavelet function (t) [Mallat, 1998]. For special choices of�(t) and (t), j andk being
relative integers, the functions�
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orthonormal basis. The signals(t) is represented as (time variable omitted):
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Wavelets approximate signals localy in time and frequency (roughly an inverse of the scale) in
the following way. The scaling coefficientv

j

0

;k

measures the local mean around time2

�j

0

k and
the wavelet coefficientw

j;k

approximates the details of the signal content around time2

�j

k and
frequency2jf

0

. Two-dimensional scaling functions and wavelets on time-space are constructed
on the four products of one-dimensional wavelets�(t)�(x),  (t)�(x), �(t) (x),  (t) (x). It is
easily generalized to higher dimension.

Wavelet-domain models and threshold selection

Simple wavelet coefficient models state that the wavelet coefficients are independent from each
other. The Gaussian distribution generally does not model appropriately the marginal distribution
of the wavelet coefficients in each band. More accurate is thezero-mean generalized Gaussian
distribution (GGD) defined by its variance�2 and a shape parameter�. The associated funtionp
is, up to a normalization constantA:

p(x) = A(�; �) exp (�j�(�)jxj=�j

�

) :

All coefficients at one scale, at indexj, are often assumed to follow the same GGD model with
specific�2

j

and�
j

. For a large class of signals, and for practical considerations, the shape parameter
is often assumed to be constant across the scales.

Assume that the correct GGD model is known for each subband. The wavelets coefficientsw
j;k

need to be thresholded according to a data and time-scale band dependent threshold�
j

. The two
most frequently used methods are:

� soft-thresholding: it takes the coefficientw
j

and shrinks it toward zero with respect to the
threshold�

j

, according to the function

ST(w
j

) = sign(w
j

) �max (jw

j

j � �

j

; 0) ;

� hard-thresholding: it discards every coefficient smaller than the threshold�

j

,

HT(w
j

) = w

j

� 1
¯
fjw

j

j � �

j

g;



where 1
¯
f�g is the set characteristic function.

We now need to estimate the noise variance�

2. In some situations, it may be estimated from low
activity portions of the signal (before the first break). It is also possible to perform an estimation
in the highest frequency subband, using the robust median estimator

�̂ = Median(jw
k

j)=0:6745:

The shape parameter� can be retrieved from calculations involving the kurtosis of the coefficients.
We refer to Chang et al. [2000] for detailed explanations on the subband threshold selection.

Multiple wavelet stacking and a toy example

The proposed algorithm works as follows: assume we have a setof relatively good orthogonal
wavelet filters. In the following, we have exclusively used Daubechies wavelets, with 7 to 14
vanishing moments [see Mallat, 1998, p. 166 sq.]. For each wavelet, data and scale dependent
skrinkage is applied to the noisy data, as detailed in the preceding section. Each denoised signal
contains residual noise from noise model mismatch, sub-optimal threshold selection or wavelet-
domain quantization. This residual noise is rarely uncorrelated to the original noise, and generally
exhibits non conventional statistics, or spoors from the wavelet shape. But from one wavelet
shrinkage to another, residual noises are generally poorlycorrelated, while the underlying signal
stays exactly in phase. The denoised signals are then stacked with hope to further reduce the
uncorrelated residual noises.

Figure 1 demonstrates the MWS (Multiple Wavelet Stacking) effect on a simple chirp segment. On
the top left, several shrinkage realizations with differents wavelets are superposed (in colour). The
MWS signal on the top right is visibly slightly less noisy that its colleagues. The bottom pictures
display the residual noises assuming we knew exactly the original signal. On the left, the residual
noises from single wavelet shrinkage are clearly stronger that the MWS estimate on the right.

Real data results and discussion

The MWS has been applied to a portion of a seimic shot gather, displayed in Fig. 2-1. Af-
ter Multiple Wavelet Stacking, the stacked shot in Fig. 2-2 exhibits low uncoherent noise level,
and does not exhibit spurious wavelet-shaped artifacts, nor unsmoothness sometimes associated to
hard-thresholding.

Conclusions

We have proposed a denoising algorithm based on concurrent wavelet shrinkage with differents
discrete wavelet transforms, using data and scale dependent thresholding. The different denoising
realizations are then stacked, in order to reduce the residual noise. As a result, the Multiple Wavelet
Stacking algorithm is relatively immune to the wavelet or the decomposition choice. It does not
seem to be affected by quantization or spurious wavelet artifacts.
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Figure 1: From left to right, and top to bottom: (1) several denoised signal realizations, (2) multiple
wavelet stack, (3) residual noise realizations, (4) multiple wavelet stack residual noise.
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Figure 2: (1) Noisy shot gather (2) Denoised by multiple wavelet stacking.
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