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Seismic exploration provides information about the ground substructures. Seismic im-
ages are generally corrupted by several noise sources. Hence, efficient denoising proce-
dures are required to improve the detection of essential geological information. Wavelet
bases provide sparse representation for a wide class of signals and images. This property
makes them good candidates for efficient filtering tools, allowing the separation of signal
and noise coefficients. Recent works have improved their performance by modelling the
intra- and inter-scale coefficient dependencies using hidden Markov models, since image
features tend to cluster and persist in the wavelet domain. This work focuses on the use
of lapped transforms associated with hidden Markov modelling. Lapped transforms are
traditionally viewed as block-transforms, composed of M pass-band filters. Seismic data
present oscillatory patterns and lapped transforms oscillatory bases have demonstrated
good performances for seismic data compression. A dyadic like representation of lapped
transform coefficient is possible, allowing a wavelet-like modelling of coefficients depen-
dencies. We show that the proposed filtering algorithm often outperforms the wavelet
performance both objectively (in terms of SNR) and subjectively: lapped transform bet-
ter preserve the oscillatory features present in seismic data at low to moderate noise
levels.
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1. Introduction

Seismic exploration aims at providing information about the ground substructures.
This information is addressed indirectly by disturbances, artificially created by
seismic energy sources. The disturbances propagate through the ground, where
geophysical strata reflect the spreading wave front. Portions of the reflected (or
refracted) waves are then collected by sensors, often situated near the ground sur-
face. The one-dimensional signal acquired by a single sensor is called a seismic
trace. In the simplest convolutive earth model, a trace is a time-based signal com-
posed of the generated disturbance convolved with the reflection coefficients at the
strata interfaces. Seismic processing is the task of inferring substructures location
and properties from the collected signals, with the help of geological models. Seis-
mic signals generally decrease in energy as the wave front propagates deeper and
are scattered by subsurface heterogeneities. The signals are also corrupted by sev-
eral noise sources that reduce the possibility to detect essential information such as
strata or faults. Seismic data filtering is thus a prominent task in seismic processing,
especially as exploration aims at imaging deeper targets, in geologically disturbed
zones.

Although the term wavelet(from the French ondelette, or little wave1) was orig-
inally used in seismic for the short support dirac shaped disturbance, wavelets have
re-emerged only recently in geophysics as efficient compression2 and noise filtering
tools3.

1.1. Related work

Due to the large volumes of seismic data, the discrete wavelet transform (DWT) has
generally been preferred to its continuous integral counterpart. Some authors have
nevertheless remarked that, although seismic traces usually appear as naturally
made of physical wavelets, seismic images are sometimes more efficiently represented
by other short local bases. It as been shown in the context of compression with
lapped transforms4 (LT) seen as filter banks or with the Local Cosine Transform5

(LCT). These short local bases are believed to be more efficient at capturing seismic
oscillatory patterns, which bear some similarities with textures in natural images.
A comparison of various local cosine transforms for image compression is given in6.

Going back to about more than 15 years of developments, the discrete wavelet
transform provides sparse bases for natural signal and images. As a consequence,
numerous DWT-based algorithms have been proposed in the past years for efficient
signal and image statistical analysis. For instance, wavelet-domain thresholding or
shrinkage is known to provide asymptotically optimal performance7 in the case of
gaussian additive noise. One of the key to noise filtering is to transform the signal
and the noise to a domain where their statistics are modelled more efficiently,
via appropriate (often orthogonal) transforms. But it has been quickly remarked
that a mere scalar coefficient thresholding after transformation did not yield the
best results in practical implementations. More specifically, several authors have
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observed that wavelet decompositions exhibit two heuristic properties often termed
as ”clustering” and ”persistence”: feature-related wavelet coefficients (near edges
or singularities) tend to cluster locally in a subband and to persist across scales,
through the classical wavelet parent-child quad-tree structure. Recently, algorithms
adopted tree-adapted subband-dependent shrinkage8,9. Also, sophisticated models
of the joint statistics may be useful for capturing key-features in real-world images.
Recent approaches rely on Markov random fields. We refer to L. Rabiner10 and A.
Willsky11 for an rich overview of their use in signal and image processing.

Recently, M. Crouse et al.12,13 have proposed a new framework based on the
hidden Markov tree. Based on12, H. Choi et al.14 have proposed efficient image
denoising15 as well as robust SAR segmentation16. HMM-based algorithms seem
to take more advantage of the ”clustering” and ”persistence” properties of wavelet
coefficients around image features. They yield an improved modelling of the coef-
ficients’ statistical dependencies and their non Gaussian behavior. They have re-
cently been notably improved by their use in the context of texture segmentation
with dual-tree complex wavelets17 and steerable pyramids18.

1.2. Main contribution

We propose in the present work to extend the use of hidden Markov models to
a lapped transform domain for seismic data filtering. This work has been partly
presented in19. LT are usually viewed as block-transforms, composed of M pass-
band filters. The superiority of lapped transforms over wavelets may come from
additional design flexibility and short local bases.

Lapped transforms were generally not often used in compression on denoising
algorithms, due to the superiority of the inter-scale coefficient dependency obtained
from the wavelet dyadic decomposition. Though, T. Tran et al.20 have demonstrated
that well-designed LT are able to improve on DWT for natural image compression,
in the Embedded Zero-tree framework21. In the context of denoising, the LT co-
efficients are rearranged into an octave-like representation. The resulting ”scales”
bear the same clustering and persistence properties as in the wavelet representation.
Moreover, LT design may enforce both orthogonality and linear-phase (in contrast
to non-Haar 1D wavelets), as well as attractive additional degrees of freedom in
design.

The superiority of lapped transforms over wavelets may come from these de-
sign degrees of freedom and sharper frequency attenuation properties of the M

filters (potentially reducing aliasing effects across the subbands). One other inter-
esting feature is based on Z. Xiong et al.22: the dyadic remapping property. When
the number of channels M is a power of 2, the transformed coefficients may be
rearranged into an octave-like representation. Experiments demonstrate that the
resulting ”scales” still bear interesting clustering and persistence properties, while
keeping superior oscillatory pattern preservation.

As a consequence, we propose here to use hidden Markov models with lapped
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transforms, relying on12,15. Special care is taken in the design of the LT used, to
assess the anisotropic shape of some seismic surveys.

In the following, we first address the philosophy behind the recently developed
wavelet-domain hidden Markov models in Section 2. Then, we focus on the combi-
nation of lapped transforms and hidden Markov models in Section 3, where lapped
transforms design and properties are reviewed, as well as the dyadic representation
of block transforms. Section 4 briefly describes properties of seismic data with an
emphasis on their oscillatory nature. Objective and subjective denoising results are
discussed in Section 5. Finally, we draw some conclusions on the proposed lapped
transform based hidden Markov model denoising algorithm, as well as possible im-
provements.

2. Wavelet-Domain Hidden Markov Models

Under the additive noise assumption, an image x and its noisy observation xn are
usually written as

xn(i, j) = x(i, j) + n(i, j) , (2.1)

where n is a random noise. The joint probability density function of the family
of images that x belongs to is often unattainable. Based on wavelet approximate
decorrelation, simpler models have been proposed for coefficient modelling. The
simplest independent Gaussian models generally obtain improvements from residual
inter-coefficients dependencies.

M. Crouse et al.12 have recently proposed a new framework for statistical signal
processing, based on wavelet-domain hidden Markov models (WD-HMM).

Let wj,k denote a wavelet coefficient at level j, 1 ≤ j ≤ J , with j = 1 corre-
sponding to the coarsest wavelet scale. The marginal pdf for the associated random
variable W is modelled as a Gaussian mixture of NS components. In the framework
of hidden Markov models23, a discrete hidden state Sj,k is associated to each wj,k

with a probability mass function P (Sj,k = s) given for each state s, 1 ≤ s ≤ NS .
While the values wj,k are observed, the value of the state S is generally unknown.
Depending on the actual state s the coefficient, the conditional pdf of W given
S = s is given by fW |S(w|S = s), modelled as a Gaussian distribution, described
in Eq. 2.2:

gs(w; µs
j,k, σs

j,k) =
1√

2πσs
j,k

exp


−

(
w − µs

j,k

σs
j,k

)2

 (2.2)

where µx and σ2
x are the mean and the variance of g. The pdf of W is given by:

pW (wj,k) =
NS∑
s=1

P (Sj,k = s)fW |S(w|S = s) . (2.3)

Based on heuristics developed for image compression21, the most widely used
model considers a two-state HMM, where the wavelet coefficients are considered as
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belonging to either a large L or small S state depending on whether the coefficient
is located near a discontinuity or not. The associated probabilities pL = p1

j (the
superscript 1 referring to the root node) and pS = 1 − p1

j possess large and small
variances respectively. Since the coefficients w are obtained by pass-band or high-
pass filters, they are assumed to have zero mean. The model can be further reduced
by considering that the variances are constant across each scale j, for a given state
s. As a consequence, Eq. 2.3 results in the following marginal distribution:

pW (wj,k) =
∑

s∈{L,S}
psgs(0, σs

j,.) . (2.4)

The HMT (hidden Markov tree) model is often described as a quad-tree struc-
tured probabilistic graph that captures the statistical properties of the wavelet
transform of images. The HMT materializes the cross-scale link between the hidden
states. It draws inspiration from zero-tree or hierarchical trees image compression
systems21,24. An illustration of an HMT is depicted in Figure 1.

Fig. 1. Diagram of a hidden Markov tree in a quad-tree. White dots represent hidden states
with arrows as dependencies, black dots the transformed coefficients. The black dot on the top
represents a parent coefficient with its four children.

The persistence property is modelled by a markovian dependency between par-
ent and children hidden states at consecutive scales. A state Sj associated with
the child coefficient wj,k at scale j depends only on the state Sρ(j) of its parent
coefficient wρ(j) at scale j − 1. The transition probabilities between the two states
s1 (parent) and s2 (child) can be described by the transition matrix εj, given by:

εs1→s2
j,ρ(j) = pSj |Sρ(j)

(Sj = s2|Sρ(j) = s1), s1, s2 ∈ {L,S}. (2.5)

The WD-HMT is completely defined by the set Θ of model parameters:

Θ = {p1
j , ε2, . . . , εJ , σs

j,.}, 1 ≤ j ≤ J, s ∈ {L,S}. (2.6)

The resulting statistical model is able to capture efficiently the joint parent-child
and the marginal distributions of the transformed coefficients. There exists efficient
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Expectation Maximization algorithms for fitting a HMT using the Minimum Length
Description criterion. We refer to12,15,25 for details on the implementation of hidden
Markov trees.

3. Lapped transforms and HMT models

3.1. Generalities on Lapped Transforms

Fig. 2. Block diagram of a M -channel maximally decimated filter bank (Hk(z): analysis and
Fk(z) : synthesis).

The Lapped Orthogonal Transform26 (LOT) has been developed to overcome
annoying blocking artifacts arising from non overlapping block transforms such as
the Discrete Cosine Transform. More generally, lapped transforms are defined as
linear phase paraunitary filter banks (FB). Figure 2 shows a typical M -channel
maximally decimated filter bank. The kth analysis and synthesis subband filters
are denoted by Hk(z) and Fk(z), respectively. The filter bank may be efficiently
represented by its polyphase form by E(z) (type-I analysis polyphase matrix) and
R(z) (type-II synthesis polyphase matrix), defined by:

[H0(z)H1(z) . . . HM−1(z)]T = E(zM )
[
1 z−1 . . . z1−M

]T
. (3.7)

and

[F0(z)F1(z) . . . FM−1(z)] =
[
z1−M z2−M . . . 1

]
R(zM ). (3.8)

The analysis and the synthesis M -band FB polyphase matrices R(z) and E(z)
(represented in Fig. 3) provide perfect reconstruction with zero delay if and only if:

R(z)E(z) = IM , (3.9)

where IM is the identity matrix27. LT may be parameterized through efficient lat-
tice structures for cost-driven optimization. We refer to 26,27,20 for a comprehensive
overview on lapped transforms. If we restrict ourselves to a subset of lapped trans-
forms with:
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Fig. 3. Block diagram of the M -channel maximally decimated filter bank from Fig. 2 with
polyphase implementation.

• an even number M of channels;
• FIR filters with linear phase and length L multiple of M (L = KM);

a large class of LT, called Generalized Lapped Biorthogonal Transforms (GLBT)
may be rewritten in the following form: let Ui and Vi be invertible matrices, Φi and
W defined for i ∈ 1, . . . , n as:

Φi =
[

Ui 0
0 Vi

]
, (3.10)

W =
[

I I

I −I

]
, (3.11)

Λ(z) =
[

I I

I z−1I

]
, (3.12)

K0 = Φ0W , andKi(z) =
1
2
ΦiWΛ(z)W . (3.13)

Then the analysis polyphase matrix can be factored as:

E(z) =
0∏

K−1

Ki (z) , (3.14)

with an appropriate choice of invertible matrices Ui and Vi. The inverse synthesis
polyphase matrix follows by element-wise inversion of matrices in Formula 3.10–
3.13.

3.2. Lapped transform optimization

The degrees of freedom in the design of lapped transforms reside in the invertible
matrices Ui and Vi. It is well known that the Givens decomposition splits any given
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orthogonal matrix of size M/2 × M/2 in a product of M(M − 2)/8 elementary
rotations 28 . In addition, every invertible matrix U can be factored into the product
UlU∆Ur, where Ul and Ur are two orthogonal matrices and U∆ is a diagonal matrix
with non-negative elements ∆i. Such a decomposition is summarized in Figure 4
for a 4 × 4 invertible matrix.

Fig. 4. Givens decomposition of an 4 × 4 invertible matrix U .

Sparse transforms are generally desired for signal denoising. It is also desirable
to design transforms with reduced aliasing in the transform domain. Transforms
can be obtained using unconstrained non-linear optimization of a weighted sum
of popular cost criteria for compression: generalized coding gain Gc, stop-band
attenuation for the analysis and synthesis filter bank Aa

sb and As
sb, DC leakage

Adc and attenuation at mirror frequencies Amf, detailed in Equations 3.15–3.19.

Gc = 10 log

[
M−1∏
i=0

(
σxi

σx
‖Fi‖2

)2
]−1/M

, (3.15)

Aa
sb =

M−1∑
i=0

∫
ω∈Ωi

∣∣Hi

(
ejω
)∣∣2 dω , (3.16)

As
sb =

M−1∑
i=0

∫
ω∈Ωi

∣∣Fi

(
ejω
)∣∣2 dω , (3.17)

Adc =

∣∣∣∣∣∣
M−1∑

i=2,4,...

L−1∑
j=0

Hi (j)

∣∣∣∣∣∣ , (3.18)

Amf =
M−1∑
i=0

∣∣Hi

(
ejωi

)∣∣2 . (3.19)

We refer to20 for details on LT optimization. It was shown in4 that a lapped
transform optimization allowed superior seismic data compression results, as com-
pared to wavelet coding, as proposed by P. Donoho et al.2. Since seismic images
generally exhibit anisotropic features (cf. Section 4), it is desirable to use different
transforms for the horizontal and the vertical dimensions of the image. In this work,
we use the traditional AR(1) intersample autocorrelation coefficient ρ model in the
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joint optimization of the coding gain and the other cost criteria. Different ρ are
estimated for different types of seismic data, in both the horizontal and vertical
direction.

3.3. Dyadic remapping of Lapped Transforms

Since hidden Markov tree models are based on a quad-tree structure, their use in a
lapped transform framework requires a similar arrangement for the LT coefficients.
A LT projects signals onto M equally spaced frequency bands, in contrast to the
octave-band wavelet representation. Fortunately, such a arrangement is possible if
the number of channels M is a power of 2 (typically 8 or 16). The transformed
coefficients bear an octave-like grouping, with J = log2 M decomposition levels22.
In one dimension, for one group of M transformed coefficients, the DC component
(corresponding to the average of the signal coefficients) is assigned to the lower
scale subband. Then, from low to high frequencies, the kth subband is formed
respectively from the next group of 2k/2 coefficients. The J + 1 groups are then
associated with respect to the block position in the signal. Figure 5 illustrates the
dyadic rearrangement for two consecutive blocks of M = 8 coefficients. The two
blocks of 8 = 23 coefficients (dots on top of Figure 5) are rearranged into J + 1 = 4
groups and yield a three-level decomposition (dots on bottom of Figure 5). In two

Fig. 5. Dyadic rearrangement of 1D LT coefficients: (Top) block-transform with uniform frequency
partition, (Bottom) octave-like representation.

dimensions, the re-mapping from a four channel block transform to a two level
dyadic transform is depicted in Fig. 6. The right-hand side image is made of 8 × 8
sub-blocks. Each sub-block gathers 4 × 4 coefficients (see the top left sub-block),
where the black squares represent the DC components. In a fashion similar to the
1D case, all the 64 DC coefficients are grouped into a 8×8 square (top left of the left-
hand side image) representing the low-pass component of the dyadic representation.
Arrows between coefficients link reciprocal locations of coefficients in the dyadic and
the block grouping scheme. Once wavelet and LT coefficients share similar grouping,
similar denoising algorithms may be applied to both domains.
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Fig. 6. Dyadic equivalence between 2D wavelet and LT coefficients: (Left) two-level octave-like
representation, (Right) four-channel block-transform with uniform frequency partition.

4. Generalities on Seismic Data

Seismic exploration aims at providing information about the ground substructures.
This information is indirectly addressed by disturbances, artificially created by
seismic energy sources. The disturbances propagate through the ground, where
geophysical strata reflect the spreading wave front. Portions of the reflected (or re-
fracted) waves are then collected by sensors (geophones, represented by squares in
Fig. 7), often situated near the ground surface. The one-dimensional signal acquired
by a single sensor is called a seismic trace. In the simplest convolutive earth model,
a trace is a time-based signal made of the generated disturbance convolved with the
reflection coefficients at the strata interfaces. The reflection and acquisition of seis-
mic signals is represented on Figure 7. Disturbances provoked by the seismic source
(depicted by triangles on Fig. 7) propagate along the ray-paths (represented by
dashed lines). Each location on the reflector is illuminated by several propagations
between couples of source and receptor.

Seismic processing is the task of inferring substructure location and proper-
ties from the collected signals, with the help of geological models. Seismic signals
generally decrease in energy as the wave front propagates deeper and is scattered
by subsurface heterogeneities. The signals are also corrupted several noise sources
that reduce the possibility to detect essential information such as strata or faults.
Seismic data filtering is thus a prominent task in seismic processing, especially as
exploration aims at imaging deeper targets, in geologically disturbed zones. We re-
fer to the book by Ö. Yilmaz29 for a comprehensive survey on seismic processing.

In this work, lapped transform based HMT filtering is applied on the two dimen-
sional seismic image represented in 8. It has been tailored to 512×512 samples. The
left panel represents each signal sample as a pixel, similarly to traditional images.
The right panel displays each column as a wiggle plot. The later is often used in
geophysics to emphases on layers. It is obtained through the processing of a collec-
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Ground surface

mirror point

raypath

source

geophone

Legend:

Reflector

Fig. 7. Seismic acquisition for one horizontal layer and three different shot points.

Fig. 8. Example of stacked seismic data in classical image form (left) and with a wiggle plot (right).

tion of seismic traces. The horizontal direction corresponds to the spatial extend of
the seismic survey. The vertical direction coarsely reflects the combined response
of several seismic traces sharing common reflection location on geological strata.
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Figure 8 thus provides a section of the ground substructure. The vertical direction
is a function of time, since it depends on the time of arrival of the wave front to
each sensor. It is not corrected with the velocity in each strata, and thus does not
provide directly information on the depth of the substructures. Figure 9 depicts the
first vertical trace obtained from Figure 8. The oscillatory behavior of seismic data
clearly appears from Figure 9. It justifies the use of transforms capable of captur-
ing these oscillations. The crossings appearing on the seismic image are zones of
interest, which shall not be blurred by denoising procedures. The decomposition
coefficients magnitude for the 30-tap orthogonal Coiflet and a 32-tap lapped trans-
form, for one vertical signal, are depicted in Figure 10, from the low-pass to the
high-pass subband (left to right). Figure 11 displays the same coefficients, sorted
by decreasing magnitude. We remark that the smallest coefficients (on the right
hand side) with the Lapped Transform are substantially smaller than that of the
wavelet (dotted blue). This behavior illustrates how a lapped transform yields a
sparser decomposition, with generally less large and more small coefficients. The
sparsity of the transform is illustrated in 2D in 12–14.
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Fig. 9. First seismic trace (vertical direction) from Fig. 8.

5. Experimental results

5.1. Comments on the dyadic remapping

Figures 12–14 illustrate the effects of decomposition on the seismic data. The trans-
formed coefficients ck are rescaled by a geometrical factor following sign(ck)|ck|α
for display purposes.
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Fig. 10. Wavelet and lapped transform coefficients obtained from the decomposition of the signal
from Fig. 9.
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Fig. 11. Wavelet and lapped transform coefficients from Fig. 10, sorted in decreasing order.

Figure 12 represents the decomposition with a 30-tap orthogonal Coiflet filter
bank. The top left corner is the low-pass approximation of the image. The other
subbands exhibit the horizontal and diagonal structures of the data in the highest
frequency bands. Almost no features are present in the vertical subbands, due to
the directions present in the image. They exhibit mostly incoherent coefficients due
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to the noise. Figure 13 represents the block-wise decomposition of seismic data (see
the diagram on the right of Fig. 6). The transformed coefficients are rearranged in
Figure 14. Compared to Figure 12, this representation exhibits less high magnitude
coefficients (bright dots), yielding a sparser decomposition. The anisotropic content
of the seismic image suggests that separate models can be used for the horizontal,
diagonal and vertical subbands of the wavelet tree, in contrast to what is observed
in natural images, for instance in M. Do et al.18, where it is suggested that wavelet
coefficients at the same scale and location but different orientations should be tied
up together to have the same hidden state.

Fig. 12. Dyadic representation of seismic data from Fig. 8 obtained from a three-level wavelet
decomposition (Coiflet 30-tap filters).

5.2. Choice of the lapped transform

The experimental results presented here have been obtained with an eight-channel
32-tap orthogonal lapped transform. Its basis vectors are represented in Figure 15.
This structure have been optimized using the cost functions described in Section 3.2.
Different AR(1) models are derived from the horizontal and vertical directions of the
seismic data, to account for the different correlation dependencies in both directions.
An eight-channel lapped transform yields a three-level dyadic after remapping. The
resulting low-pass approximation is further decomposed by a wavelet transform.
Results are compared in Section 5 with a wavelet decomposition at the same level.
The same wavelet is used in both cases.

In
t. 

J.
 W

av
el

et
s 

M
ul

tir
es

ol
ut

 I
nf

. P
ro

ce
ss

. 2
00

4.
02

:4
55

-4
76

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 8
2.

22
4.

88
.1

15
 o

n 
02

/2
7/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



November 3, 2004 6:8 WSPC/WS-IJWMIP 00067

Lapped Transforms and Hidden Markov Models for Seismic Data Filtering 469

Fig. 13. Block representation of seismic data from Fig. 8 obtained from a eight-channel lapped
transform.

Fig. 14. Dyadic representation of seismic data from Fig. 8 obtained from a eight-channel lapped
transform (Fig. 13 after dyadic remapping).

5.3. Results

The denoising results are addressed in both the objective and subjective sense.
Objective results are described in terms of signal-to-noise ratio (SNR): let sk, sn

k ,
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Fig. 15. Basis vectors for an eight-channel 32-tap orthogonal lapped transform .

sd
k be the samples of the original, the noisy and the denoised data respectively.

SNR = 20 log10

(∑
k

s2
k

(sk − sd
k)2

)
. (5.20)

Table 1. Objective denoising results comparison at var-
ious initial signal-to-noise levels in dB.

Noisy data Wavelet (Coif 30)(a) LT (8 × 32)(b)

21.9 30.1 29.9
24.4 31.7 32.1
26.0 32.7 33.2
29.1 34.8 35.3
34.0 38.3 39.0
40.0 42.4 43.2
43.0 44.6 45.4

Note: Table notes
aTwo-channel 30-tap Coiflet filter bank
bEight-channel 32-tap orthogonal lapped transform

The original data is corrupted by gaussian white noise at various levels. Table 1
gathers SNR results after denoising for both the wavelet and the lapped transform
HMT noise removal. We should mention that denoising results typically vary within
±0.1 dB with different noise realizations at the same variance. Both HMT-based
algorithms provide up to 8 dB improvement at low SNRs. This gap decreases as
the SNR increases. Lapped transform based denoising exhibits a slight superiority
in terms of signal-to-noise ratio, which does not exceed 1.0 dB with this data.
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Subjective results also are of specific importance for seismic data quality as-
sessment. It is particularly important that denoising does not blur the ground sub-
structure. Therefore, it is useful to carefully observe the denoised data, as well as
the noise removed by the filtering procedure, as illustrated in Figures 16–19. Each
figure represents the denoised data sd

k (left panel) and the removed noise (or dif-
ference section), i.e. sn

k − sd
k, on the right panel. The major requirements are that

features remain clear in the denoised image and that the difference section exhibits
as few structured noise as possible.

Figures 16–17 display the denoised images with an initial moderate 40 dB noise.
Clearer structure preservation is apparent at the top of the seismic section after
lapped transform denoising: the utmost top alignments on the seismic image have
apparently merged after wavelet denoising. This feature is more pronounced (more
coherent on neighboring traces) on the wavelet denoised difference section. We
conclude that at moderate SNRs, lapped transforms generally preserve seismic in-
formation better that wavelets, while objective measures do not differ by more than
1 dB.

Seismic features preservation is clearer at lower SNRs, as illustrated in Figures
18–19. Oversmoothing is observed after wavelet denoising on the left of 19, especially
at the bottom of the image. Crest and valley alignments in the wiggles align less
evidently than in the LT case. Difference sections from Figures 18–19 (right hand
side) clearly show that a lot more of structured information is removed with wavelet,
as compared to lapped transform denoising. Similar observations were derived on
texture preservation in natural images30. Textures and seismic seem to share similar
oscillatory content, giving an advantage on lapped transform decomposition over
wavelet bases for denoising.

6. Conclusions and discussion

We propose to extend the use of hidden Markov models to a lapped transform
domain for seismic data filtering. Lapped transforms are converted to a dyadic
like representation, to account for inter-scale coefficient dependencies. Due to the
oscillatory nature of seismic data, oscillatory projection bases yield sparer decom-
position of the data. Moreover, lapped transform enjoy improved design degrees
of freedom. They allow to design data adapted transforms. Sharper attenuation
between the filter frequency bands also reduces aliasing effects in the frequency
domain. We show that lapped transform based denoising generally outperforms
wavelet denoising using an objective SNR measure. More important, we demon-
strate that lapped transforms better preserve seismic information (subjectively),
since they cause less blurring than wavelet and the removed noise contains less
coherent geologic structures.

For fair comparison, we used the same decomposition level for the wavelet and
the lapped transform. Since the decomposition is limited with the LT, depending
on the number of channels, it is further split by applying a wavelet decomposition
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Fig. 16. Seismic image (left) and difference section (right) with lapped transform based HMT
denoising at 40.0 dB.

to the low-pass subband. Future works will focus on a better control of the low-
pass approximation image, possibly by a hierarchical lapped transform with shorter
support, to reduce edge artifacts on the smaller approximation. Improvement is
also possible with the use of more involved directional transforms or shift-invariant
implementation, since the lapped transforms used in this work are maximally dec-
imated.
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