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ABSTRACT

Hidden Markov trees (HMT) wavelet models have demonstrated
superior performance in image filtering, by their ability tocap-
ture features across scales. Recently, we proposed to extend the
HMT framework to the Lapped Transform domain, where Lapped
Transforms (LT) are M-channel linear phase filter banks. When the
number of channels is a power of 2, the block partition provided by
LT is remapped to an octave-like representation, where an HMT is
able to model the statistical dependancies between intra- and inter-
band coefficients. Due to better energy compaction and reduced
aliasing properties, LT outperforms discrete wavelet transforms at
moderate noise levels, both subjectively and objectively.However,
critically-decimated LT suffers from a lack of shift-invariance, re-
sulting in a degraded performance. In this paper, we study the im-
provement of HMT modeling in the LT domain (HMT-LT), com-
bined with a redundant decomposition, in order to increase its per-
formance for image denoising.

1. INTRODUCTION

Sparse representation is a key property in many signal process-
ing algorithms. The discrete wavelet transform (DWT) provides
such representations for a lot of real-world signals. As a conse-
quence, numerous DWT-based algorithms form the basis for ef-
ficient signal and image statistical analysis, where asymptotically
optimal performance is achieved by wavelet-domain thresholding,
in the case of Gaussian additive noise [1]. The key to noise fil-
tering is to study signals in domains where statistics of theclean
signal and the noise are modeled more efficiently, via appropri-
ate transformations. Wavelet decompositions exhibit two heuristic
properties often termed ”clustering” and ”persistence”: feature-
related wavelet coefficients (edges or singularities) tendto clus-
ter locally in a subband and to persist across scales, through the
wavelet tree. Recently, algorithms adopted tree-adapted subband-
dependent shrinkage [2]. Also, sophisticated models of thejoint
statistics may be useful for capturing key-features in real-world
images. A recent approach relies on Markov random fields. We
refer to [3] for an rich overview of their use in signal and image
processing. Based on the Hidden Markov Tree framework devel-
oped in [4], H. Choiet al. have proposed efficient image denoising
[5].

In [6], we proposed to extend the use of hidden Markov mod-
els to a lapped transform (HMT-LT) domain. The use of Lapped
Transforms was motivated by their superior energy compaction
properties [7] as well as their robustness to oversmoothing. For

our application, the LT coefficients are rearranged into a pseudo-
octave representation, bearing the same clustering and persistence
properties as in the wavelet representation. In the following, we
first briefly review some properties of the Lapped Transformsand
the dyadic re-mapping of the transformed coefficients. In Section 3
basic principles behind Hidden Markov Tree modeling are briefly
reviewed. We then explain the association of HMT denoising in
the Lapped Transform domain and redundant decomposition. Re-
sults are given in Section 5, in association with heuristics(Section
6) proposed for computational cost reduction, based on random-
ized averaging over shifts.MMM MM
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Fig. 1. Block diagram of the polyphase matricesE(z) andR(z)
of a processing system based on aM -band critically sampled filter
bank.

2. LAPPED TRANSFORMS AND OCTAVE
REPRESENTATION

The Lapped Orthogonal Transform (LOT, [8]) has been developed
to overcome the annoying blocking effects of the DCT. Lapped
transforms are linear phase paraunitary filter banks (FB). Ablock
diagram of the analysis and synthesis FB pair is given in Figure
1. The analysis and the synthesisM -band FB polyphase matrices
(E(z) andR(z) respectively) provide perfect reconstruction with
zero delay if and only if:R(z)E(z) = IM ;
whereIM is the identity matrix [9, p. 304]. LT may be parame-
terized through efficient lattice structures for cost-driven optimiza-



tion. We refer to [8, 9, 7] for a comprehensive overview on Lapped
Transforms.

Fig. 2. Dyadic rearrangement of 1D LT coefficients: (Top) block-
transform with uniform frequency partition, (Bottom) octave-like
representation.
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Fig. 3. Dyadic equivalence between octave and block transforms:
(Left) two-level octave-like representation, (Right) four-channel
block-transform with uniform frequency partition.

Lapped Transforms project signals ontoM equally spaced fre-
quency bands, in contrast to the octave-band wavelet representa-
tion. WhenM is a power of 2, the transformed coefficients bear
an octave-like grouping, withJ = log2M decomposition lev-
els. It follows from the trivial identity2J = 1 +PJj=1 2j�1.
The DC component (the ”1” term) is assigned to the lower scale
subband. Then, from low to high frequencies, thejth subband is
formed respectively from the next group of2j�1 coefficients. TheJ +1 groups are then associated with respect to the block position
in the signal. Figure 2 represents the dyadic rearrangementfrom
two consecutive blocks of8 = 23 coefficients into a three-level
decomposition.

The re-mapping from a four channel block transform to a two
level dyadic transform is depicted in Fig. 3. Arrows betweenco-
efficients (little black or white squares) link reciprocal locations of
coefficients in the dyadic and the block grouping scheme. Once
wavelet and LT coefficients share similar grouping, the samede-
noising procedure may be applied to both domains.

The re-mapping from an eight-channel DCT-II block trans-
form into a three-level pseudo-octave is illustrated on ”Mandrill”
in Fig. 4. Figure 4-b is made of8� 8 subblocks. Figure 4-c repre-
sents its pseudo-octave representation. The coefficient magnitude
has been scaled by an exponential factor for visualization.

3. HIDDEN MARKOV TREE MODEL FOR OCTAVE
DECOMPOSITION

Wavelet coefficients of real-world images generally possess a non-
Gaussian distribution, with a lot of small coefficients and few large
ones, due to the sparse properties of wavelet decompositions.

The Hidden Markov Tree (HMT) model developed by Crouse
et al. [4] is often described as a quad-tree structured probabilistic
graph that captures the statistical properties of the wavelet trans-
forms of images. It is based on a hidden Markov model (HMM)
which exploits hidden states. The non-Gaussian behavior ofthe
coefficients is modeled as a Gaussian mixture with two compo-
nents. The hidden states of the HMM are the large (L) or small

(a)

(b) (c)

Fig. 4. (a) Mandrill image (b) 8-channel block decomposition (c)
8-channel octave decomposition.

Fig. 5. Diagram of a Hidden Markov Tree in a quad-tree. White
dots represent hidden states with arrows as parent-child dependen-
cies, black dots the wavelet coefficients whose conditionaldistri-
bution depends on the nature of the hidden state.

(S) nature of the coefficients. It determines the conditional distri-
bution of the associated coefficient. Since the coefficient nature
tends to propagate across scales (see [10, 5]), the Hidden Markov
Tree materializes the cross-scale (parent-child) link between hid-
den states. A template HMT is depicted in Figure 5. The pa-
rameters of the HMT model are estimated using an Expectation
Maximization (EM) algorithm. We refer to [4, 5] for details on the
implementation of Hidden Markov Trees.

4. REDUNDANT LAPPED TRANSFORMS

For compression purposes, non-redundant transforms are often con-
sidered. In other applications such as detection, segmentation or
filtering, redundancy is generally recognized as a substantial im-
provement. In the particular framework of filter banks, the classi-
cal critically decimated construction generally induces asensitiv-
ity to integer delays in signals.

LetS be the ”unit” shift operator defined on a discrete signalx
byS(x)j = xj+1. Due to subsampling, aL-level discrete wavelet
transform generally produces different coefficients for the signalx



and its shifted versionsSkx, unlessk is a multiple of2L. Tradi-
tional shrinkage thus yields different estimates of the clean signalx̂, depending on the shiftk, which may not be realistic in many
applications. Moreover, shift-variance is also associated with an-
noying ringing artifacts in the vicinity of discontinuities in the sig-
nal.

Shift-invariant or stationary transforms have been used to”fill
in the gaps” (cf. [11]) generated by the subsampling operators.
The representation of the original signal thus becomes redundant.
One of the most popular implementation consists in applyinga
denoising schemeD� (for instance a thresholding operator) to
a range of meaningful signal shiftsk 2 I, and to obtain sev-
eral denoised estimatesDSkx of x by shifting them back̂xk =S�kDSkx. A new denoised estimatêxcs = Ek2I(x̂k) is then ob-
tained by this ”cycle-spinning” procedure; the mean on all shifts is
often used [12]. An similar method has also been used for JPEG
deblocking [13], and further extended to other collectionsof trans-
formations, for instance including translations and rotations for
images [14]. ForM -channel filter banks, it is sufficient to useM
shifts to achieve shift-invariance for 1-D signals. In thiswork, we
first usedM �M shifts for 2-D images (see Section 5). The huge
computational burden may be reduced by practical considerations
(see Section 6).

5. APPLICATION: IMAGE DENOISING

We have performed simulations on five images with different car-
acteristics, at five noise levels. Table 1 compares the performance
of the HMT on both shift-variant and shift-invariant filtering via
Lapped Transforms.

We have reported in Table 1 the PSNR of the noisy image
and the result of ”direct” HMT-LT denoising on the first two lines.
Direct denoising is performed as described in [6], where Lapped
Transform improvements over wavelets is also discussed. But
since shift-variant filtering naturally depends on shifts,we also
have reported the minimum and the maximum PSNR obtained
from filtering of theM �M possible shifted versions of the orig-
inal image. They are denoted by Mincs and Maxcs. This issue is
important, as we can see from the ”Boat” image, which exhibit
an extreme behavior. With a 17.7 dB noise, the PSNR after shift-
variant filtering may vary from 25.8 to 27.0 dB, simply by shifting
and reverse shifting after filtering. Such a dramatic changeought
to be mentioned for a fair comparison between denoising methods.

The ”redundant” performance is obtained by averaging over
all the possible shifts. Other more robust estimates could have
been used. We have for instance tested a median estimator. Since
its results differed in general from the average estimator by less
than 0.1 dB, it has not been reported here.

In a majority of the images and noise levels tested here, redun-
dant HMT-LT denoising outperforms direct denoising, with max-
imum of 1.1 dB improvement for the ”Boat” image at low noise
level. When the noise level increases, the gain is reduced: it is
about 0.5 dB for noise level between 15 to 20 dB, and falls to 0.1-
0.2 dB at 12 dB noise (last column).

If we now focus on Mincs and Maxcs, we remark that generally
shift-variance increases with the level of noise: the difference be-
tween Mincs and Maxcs increases as the PSNR of the noisy image
decreases. As a result, especially at high noise levels, it becomes
desirable to find the best shift, i.e. the one that achieves the best
PSNR after denoising. As we can see from Table 1, the redundant
HMT-LT performs equally or better than the best shift HMT-LT

(except for the ”Boat” image with 12.0 dB noise). Interestingly
for ”Mandrill” at low noise (30.5 dB), both Direct and best shift
denoising actually degrade the final noise level. This may bedue
to the specificity of the animal hair regions, which are difficult to
distinguish from noise. In this case, redundant HMT-LT denoising
still slightly improves the PSNR by 0.2 dB.

The overall objective improvement of the redundant HMT-LT
is illustrated subjectively in Fig. 6, where slightly better texture
preservation is observed.

Barbara

Noisy 30.4 24.4 20.9 17.7 12.0
Direct 33.3 29.1 26.6 24.2 20.0
Mincs 33.3 28.9 26.4 23.9 19.5
Maxcs 33.4 29.2 26.6 24.3 20.1
Redundant 34.1 29.9 27.3 24.8 20.2

Boat

Noisy 30.5 24.4 20.9 17.7 12.0
Direct 36.5 32.4 29.0 26.7 21.4
Mincs 36.3 31.8 28.7 25.8 20.9
Maxcs 36.8 32.5 29.6 27.0 21.7
Redundant 37.6 32.9 29.8 27.1 21.6

Goldhill

Noisy 30.4 24.4 20.9 17.7 12.1
Direct 34.0 30.2 27.9 25.5 21.4
Mincs 34.0 29.9 27.5 25.0 20.6
Maxcs 34.1 30.3 27.9 25.7 21.5
Redundant 34.6 30.5 28.1 25.8 21.5

Lena

Noisy 30.5 24.4 20.9 17.8 12.1
Direct 33.8 29.6 27.2 24.9 20.7
Mincs 33.7 29.5 27.0 24.5 20.1
Maxcs 33.8 29.7 27.4 25.1 20.8
Redundant 34.7 30.3 27.8 25.3 20.9

Mandrill

Noisy 30.5 24.5 20.9 17.7 12.1
Direct 30.2 26.6 24.4 22.3 18.9
Mincs 29.9 26.5 24.4 22.2 18.6
Maxcs 30.3 26.6 24.4 22.4 19.1
Redundant 30.7 27.0 24.8 22.5 19.1

Table 1. PSNRs (in dB) comparison between non-redundant and
redundant HMT-LT for several images.

6. COMPLEXITY REDUCTION

The proposed algorithm only requires to run the denoising algo-
rithm on shifted versions of a single image. Since we want to im-
prove upon the best shift HMT-LT denoising, it seems naturalto
perform the average estimator over all theM �M possible shifts.
The number of channelsM is here a power of two, typically 8 or
16. The number of possible shifts represents a significant com-
putational complexity. The complexity can be greatly reduced by
considering the same modeling HMT for all shifts, reducing the
EM training cost for the model parameters.

The number of transformations may also be reduced. In prac-
tice, not all the possible shifts are required, as long as onestill



(a) Barbara, detail (b) Noisy image (24.4 dB)

(c) HMT-LT (29.1 dB) (d) Redun. HMT-LT (29.9 dB)

Fig. 6. (a) A portion of the Barbara image (b) with additive noise
(24.4 dB), (c) after direct HMT-LT denoising (29.1 dB), (d) after
redundant HMT-LT denoising (29.9 dB).

obtains a robust estimate over a subset of shifts. This idea has al-
ready been issued in several works, for instance [12] for denoising
or [13] in the context of JPEG deblocking, with some shifts chosen
a priori.

In this work, we used a heuristic based on a randomized strat-
egy proposed in [14]. We have randomly pickedk shifts (k � 63)
which are then averaged. Figure 7-a displays three realizations
(marked by� signs) of averagingk randomly picked shifts,k
varying from 1 to 63. The black solid line plots the average PSNR
over a hundred realization. The horizontal straight lines represent,
from bottom to top, the quantities Mincs, Maxcs and the PSNR of
the proposed algorithm. Fewk randomly picked shifts, around 10,
suffice to gain over Maxcs and reach a PSNR close to that of the
redundant HMT-LT. Figure 7-b shows the variation of the PSNR
standard deviation between realizations with the number ofshifts.
The solid line represents the decay we could expect from the av-
eraging ofk realizations of a deterministic image corrupted with a
random noise.
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(a) Averaging realizations. (b) PSNR standard deviations.

Fig. 7. (a) Three realizations of averaging over a varying number
of shifts, from 1 to 63 (colored�), and comparison with Mincs,
Maxcs and redundant HMT-LT, for ”Boat” at 20.9 dB (b) PSNR
standard deviations for hundred randomized shift averaging real-
izations.

7. CONCLUSIONS

We propose an image denoising algorithm based on a Hidden Markov
Tree model applied in the Lapped Transform domain, combined
with a redundant decomposition. It is able to outperform thenon-
redundant HMT-LT algorithm proposed in [6], as well as its ”best
shift” version. The overall computational cost may be reduced by
averaging over a randomized selection of image shifts.
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