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ABSTRACT our application, the LT coefficients are rearranged intoeugs-

Hidden Markov trees (HMT) wavelet models have demonstrated OCtave representation, bearing the same clustering astsesrce

superior performance in image filtering, by their ability dap- properties as in the wavelet representation. In the fohigwive
ture features across scales. Recently, we proposed todettten  first briefly review some properties of the Lapped Transfoams
HMT framework to the Lapped Transform domain, where Lapped the dyadic re-mapping of the transformed coefficients. ktise 3
Transforms (LT) are M-channel linear phase filter banks. kithe basic principles behind Hidden Markov Tree modeling areflyi
number of channels is a power of 2, the block partition prestitly reviewed. We then explain the association of HMT denoisimg i
LT is remapped to an octave-like representation, where aiigM  the Lapped Transform domain and redundant decompositien. R
able to model the statistical dependancies between imchinger- sults are given in Section 5 in association Wlth heuriqi®exction
band coefficients. Due to better energy compaction and eetiuc 8) Proposed for computational cost reduction, based onorand
aliasing properties, LT outperforms discrete waveletdfarms at ~ 12ed averaging over shifts.

moderate noise levels, both subjectively and objectivdbwever,

critically-decimated LT suffers from a lack of shift-invance, re-

sulting in a degraded performance. In this paper, we stuelynth z[n] L.
provement of HMT modeling in the LT domain (HMT-LT), com- 2~
bined with a redundant decomposition, in order to incretssear- L.
formance for image denoising. z E(=)
1. INTRODUCTION I i
-

Sparse representation is a key property in many signal psece
ing algorithms. The discrete wavelet transform (DWT) pdes

such representations for a lot of real-world signals. As @see Analysis FB Synthesis FB

guence, numerous DWT-based algorithms form the basis for ef

ficient signal and image statistical analysis, where asgtigatlly

optimal performance is achieved by wavelet-domain thiehg,  Fjg 1. Block diagram of the polyphase matricB$z) andR(z)
in the case of Gaussian additive noise [1]. The key to noise fil 555 processing system based ohfaband critically sampled filter

tering is to study signals in domains where statistics ofdlean bank.
signal and the noise are modeled more efficiently, via approp
ate transformations. Wavelet decompositions exhibit teuaristic
properties often termed "clustering” and "persistencedattire-
related wavelet coefficients (edges or singularities) tendlus-

ter locally in a subband and to persist across scales, thrthey
wavelet tree. Recently, algorithms adopted tree-adaptebasd-
dependent shrinkage [2]. Also, sophisticated models ofdims
statistics may be useful for capturing key-features in-veaild
images. A recent approach relies on Markov random fields. We
refer to [3] for an rich overview of their use in signal and tea
processing. Based on the Hidden Markov Tree framework eevel
oped in [4], H. Chokt al. have proposed efficient image denoising

[5].
In [6], we proposed to extend the use of hidden Markov mod- R(2)E(z) = L,
els to a lapped transform (HMT-LT) domain. The use of Lapped
Transforms was motivated by their superior energy compacti  wherel,, is the identity matrix [9, p. 304]. LT may be parame-
properties [7] as well as their robustness to oversmoothior terized through efficient lattice structures for cost-enoptimiza-

2. LAPPED TRANSFORMSAND OCTAVE
REPRESENTATION

The Lapped Orthogonal Transform (LOT, [8]) has been deeslop
to overcome the annoying blocking effects of the DCT. Lapped
transforms are linear phase paraunitary filter banks (FB)logk
diagram of the analysis and synthesis FB pair is given in féigu
1. The analysis and the synthegi&-band FB polyphase matrices
(E(z) andR(z) respectively) provide perfect reconstruction with
zero delay if and only if:



tion. We referto [8, 9, 7] for a comprehensive overview onpheg
Transforms.
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Fig. 2. Dyadic rearrangement of 1D LT coefficients: (Top) block-
transform with uniform frequency partition, (Bottom) oetalike
representation.

Fig. 3. Dyadic equivalence between octave and block transforms:

(Left) two-level octave-like representation, (Right) fethannel
block-transform with uniform frequency partition.

Lapped Transforms project signals ortbequally spaced fre-
guency bands, in contrast to the octave-band wavelet remtaes
tion. WhenM is a power of 2, the transformed coefficients bear
an octave-like grouping, witlf = log, M decomposition lev-
els. It follows from the trivial identity2” = 1+ 3>7_, 277",
The DC component (the "1" term) is assigned to the lower scale
subband. Then, from low to high frequencies, jile subband is
formed respectively from the next group it * coefficients. The
J + 1 groups are then associated with respect to the block positio
in the signal. Figure 2 represents the dyadic rearrangeframt
two consecutive blocks & = 22 coefficients into a three-level
decomposition.

The re-mapping from a four channel block transform to a two
level dyadic transform is depicted in Fig. 3. Arrows between
efficients (little black or white squares) link reciprocatations of
coefficients in the dyadic and the block grouping scheme.eOnc
wavelet and LT coefficients share similar grouping, the sdme
noising procedure may be applied to both domains.

The re-mapping from an eight-channel DCT-II block trans-
form into a three-level pseudo-octave is illustrated on Helidll”
in Fig. 4. Figure 4-b is made & x 8 subblocks. Figure 4-c repre-
sents its pseudo-octave representation. The coefficieghitoale
has been scaled by an exponential factor for visualization.

3. HIDDEN MARKOV TREE MODEL FOR OCTAVE
DECOMPOSITION

Wavelet coefficients of real-world images generally posseason-
Gaussian distribution, with a lot of small coefficients aed farge
ones, due to the sparse properties of wavelet decompasition

The Hidden Markov Tree (HMT) model developed by Crouse
et al. [4] is often described as a quad-tree structured probébilis
graph that captures the statistical properties of the veavedns-
forms of images. It is based on a hidden Markov model (HMM)
which exploits hidden states. The non-Gaussian behavitieof
coefficients is modeled as a Gaussian mixture with two compo-
nents. The hidden states of the HMM are the large (L) or small

(b)

(©

Fig. 4. (a) Mandrill image (b) 8-channel block decomposition (c)
8-channel octave decomposition.

Fig. 5. Diagram of a Hidden Markov Tree in a quad-tree. White
dots represent hidden states with arrows as parent-chileiden-
cies, black dots the wavelet coefficients whose conditioinstti-
bution depends on the nature of the hidden state.

(S) nature of the coefficients. It determines the conditiaiigtri-
bution of the associated coefficient. Since the coefficiettire
tends to propagate across scales (see [10, 5]), the Hidddroia
Tree materializes the cross-scale (parent-child) linkveeh hid-

den states. A template HMT is depicted in Figure 5. The pa-
rameters of the HMT model are estimated using an Expectation
Maximization (EM) algorithm. We refer to [4, 5] for details ¢the
implementation of Hidden Markov Trees.

4. REDUNDANT LAPPED TRANSFORMS

For compression purposes, non-redundant transformsterean-
sidered. In other applications such as detection, segtiemtar
filtering, redundancy is generally recognized as a sulistant-
provement. In the particular framework of filter banks, theessi-
cal critically decimated construction generally induceseasitiv-
ity to integer delays in signals.

Let .S be the "unit” shift operator defined on a discrete signal
by S(z); = z;+1. Due to subsampling, A-level discrete wavelet
transform generally produces different coefficients fersflgnalz



and its shifted version§*z, unlessk is a multiple of2l. Tradi-
tional shrinkage thus yields different estimates of theulsignal
z, depending on the shift, which may not be realistic in many
applications. Moreover, shift-variance is also assodiatéh an-
noying ringing artifacts in the vicinity of discontinuigen the sig-
nal.

Shift-invariant or stationary transforms have been usédlto
in the gaps” (cf. [11]) generated by the subsampling opesato
The representation of the original signal thus becomesncahut.
One of the most popular implementation consists in applgng
denoising schemé, (for instance a thresholding operator) to
a range of meaningful signal shifis € I, and to obtain sev-
eral denoised estimatd3S* ¢ of x by shifting them backi;, =
S~*DS*x. A new denoised estimaties = Ejcr(Z) is then ob-
tained by this "cycle-spinning” procedure; the mean onfailts is
often used [12]. An similar method has also been used for JPEG
deblocking [13], and further extended to other collectiohsans-
formations, for instance including translations and iotet for
images [14]. FoM/-channel filter banks, it is sufficient to udé
shifts to achieve shift-invariance for 1-D signals. In thisrk, we
firstusedM x M shifts for 2-D images (see Section 5). The huge
computational burden may be reduced by practical condidas
(see Section 6).

5. APPLICATION: IMAGE DENOISING

We have performed simulations on five images with differemt c
acteristics, at five noise levels. Table 1 compares the pedoce
of the HMT on both shift-variant and shift-invariant filteg via
Lapped Transforms.

We have reported in Table 1 the PSNR of the noisy image
and the result of "direct” HMT-LT denoising on the first twads.
Direct denoising is performed as described in [6], wherepeap
Transform improvements over wavelets is also discussedt Bu
since shift-variant filtering naturally depends on shiftg also
have reported the minimum and the maximum PSNR obtained
from filtering of theM x M possible shifted versions of the orig-
inal image. They are denoted by Mirand Maxs. This issue is
important, as we can see from the "Boat” image, which exhibit
an extreme behavior. With a 17.7 dB noise, the PSNR aftet-shif
variant filtering may vary from 25.8 to 27.0 dB, simply by $im§
and reverse shifting after filtering. Such a dramatic chamgght
to be mentioned for a fair comparison between denoising oasth

The "redundant” performance is obtained by averaging over
all the possible shifts. Other more robust estimates coaie h
been used. We have for instance tested a median estimatoe Si
its results differed in general from the average estimayolebs
than 0.1 dB, it has not been reported here.

In a majority of the images and noise levels tested herenredu
dant HMT-LT denoising outperforms direct denoising, withxm
imum of 1.1 dB improvement for the "Boat” image at low noise
level. When the noise level increases, the gain is redudeid: i
about 0.5 dB for noise level between 15 to 20 dB, and falls1e 0.
0.2 dB at 12 dB noise (last column).

If we now focus on Migs and Maxs, we remark that generally
shift-variance increases with the level of noise: the déffiee be-
tween Mins and Maxs increases as the PSNR of the noisy image
decreases. As a result, especially at high noise levelecitrnes
desirable to find the best shift, i.e. the one that achievedést
PSNR after denoising. As we can see from Table 1, the redandan
HMT-LT performs equally or better than the best shift HMT-LT

(except for the "Boat” image with 12.0 dB noise). Intereghin
for "Mandrill” at low noise (30.5 dB), both Direct and bestifth
denoising actually degrade the final noise level. This maglue
to the specificity of the animal hair regions, which are diffido
distinguish from noise. In this case, redundant HMT-LT dsimg
still slightly improves the PSNR by 0.2 dB.

The overall objective improvement of the redundant HMT-LT
is illustrated subjectively in Fig. 6, where slightly bettexture
preservation is observed.

| Barbara |
Noisy 304 | 244 | 209 | 17.7 | 12.0
Direct 33.3| 29.1| 26.6 | 24.2 | 20.0
Mincs 33.3| 289| 26.4| 23.9| 195
MaXcs 334 | 29.2| 26.6| 24.3| 20.1
Redundant|| 34.1 | 29.9 | 27.3 | 24.8 | 20.2

| Boat |
Noisy 305|244 | 209 | 17.7 | 12.0
Direct 36.5| 324 | 29.0| 26.7 | 21.4
Mings 36.3| 31.8| 28.7| 25.8 | 20.9
MaXcs 36.8| 325 29.6 | 27.0| 21.7
Redundant|| 37.6 | 32.9 | 29.8 | 27.1| 21.6

| Goldhill |
Noisy 304 | 244 209 | 17.7 | 121
Direct 34.0| 30.2| 279 | 255 | 214
Mings 34.0| 299 27.5| 25.0| 20.6
MaXcs 34.1| 30.3| 27.9| 25.7 | 215
Redundant|| 34.6 | 30.5| 28.1 | 25.8| 21.5

| Lena |
Noisy 305| 244|209 | 17.8 | 12.1
Direct 33.8| 29.6 | 27.2| 249 | 20.7
Mincs 33.7| 295| 270 245 | 20.1
MaXcs 33.8| 29.7| 27.4 | 25.1 | 20.8
Redundant|| 34.7 | 30.3 | 27.8 | 25.3| 20.9

| Mandrill |
Noisy 305| 245|209 17.7 | 121
Direct 30.2| 266 | 24.4| 22.3| 18.9
Mincs 29.9| 26.5| 24.4 | 22.2 | 18.6
MaXcs 30.3| 266 | 24.4| 224 | 19.1
Redundant|| 30.7 | 27.0| 24.8 | 225 | 19.1

Table 1. PSNRs (in dB) comparison between non-redundant and
redundant HMT-LT for several images.

6. COMPLEXITY REDUCTION

The proposed algorithm only requires to run the denoisigg-al
rithm on shifted versions of a single image. Since we wantto i
prove upon the best shift HMT-LT denoising, it seems nattoal
perform the average estimator over all filex M possible shifts.
The number of channel®/ is here a power of two, typically 8 or
16. The number of possible shifts represents a significamt co
putational complexity. The complexity can be greatly restiby
considering the same modeling HMT for all shifts, reducihg t
EM training cost for the model parameters.

The number of transformations may also be reduced. In prac-
tice, not all the possible shifts are required, as long astitfie



(a) Barbara, detail

(c) HMT-LT (29.1 dB) (d) Redun. HMT-LT (29.9 dB)
Fig. 6. (a) A portion of the Barbara image (b) with additive noise
(24.4 dB), (c) after direct HMT-LT denoising (29.1 dB), (djex
redundant HMT-LT denoising (29.9 dB).

obtains a robust estimate over a subset of shifts. This ideah
ready been issued in several works, for instance [12] fooidamg
or [13] in the context of JPEG deblocking, with some shiftegdn
apriori.

In this work, we used a heuristic based on a randomized strat- [g]

egy proposed in [14]. We have randomly pickedhifts ¢ < 63)
which are then averaged. Figure 7-a displays three reilizat
(marked byx signs) of averaging: randomly picked shiftsk
varying from 1 to 63. The black solid line plots the averag®&lRS
over a hundred realization. The horizontal straight lireggesent,
from bottom to top, the quantities Mi) Max.s and the PSNR of
the proposed algorithm. Fekwrandomly picked shifts, around 10,
suffice to gain over Max and reach a PSNR close to that of the
redundant HMT-LT. Figure 7-b shows the variation of the PSNR
standard deviation between realizations with the numbshigfs.
The solid line represents the decay we could expect fromithe a
eraging ofk realizations of a deterministic image corrupted with a
random noise.

E] @
Number of s (¢)

(a) Averaging realizations. (b) PSNR standard deviations.

Fig. 7. (a) Three realizations of averaging over a varying number

of shifts, from 1 to 63 (coloreck), and comparison with Mig,
Maxcs and redundant HMT-LT, for "Boat” at 20.9 dB (b) PSNR
standard deviations for hundred randomized shift avegaggal-
izations.

7. CONCLUSIONS

We propose an image denoising algorithm based on a HiddekaMar
Tree model applied in the Lapped Transform domain, combined
with a redundant decomposition. It is able to outperformrtbe-
redundant HMT-LT algorithm proposed in [6], as well as ite$b
shift” version. The overall computational cost may be redlby
averaging over a randomized selection of image shifts.
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