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ABSTRACT

Algorithms based on wavelet-domain hidden Markov tree (HMT)
have demonstrated excellent performance for image denoising. The
HMT model is able to capture image features across the scales, in
contrast to classical shrinkage that thresholds subbands indepen-
dently.

In this work, we extend the aforementioned results to a lapped
transform domain. Lapped Transforms (LT) are

�

-channel linear
phase �lter banks. Their use is motivated by their good energy
compaction properties and robustness to oversmoothing. Itis also
observed that LT preserve better oscillatory image components,
such as textures.

Since LT are applied as block transforms, the transforms coef-
�cients are rearranged into an octave-like decomposition,and their
statistics are modeled by the same HMT structure as in the wavelet
case. At moderate noise levels, the proposed algorithm is able to
improve the results obtained with wavelets, subjectively and ob-
jectively.

1. INTRODUCTION AND MOTIVATIONS

The discrete wavelet transform (DWT) provides sparse represen-
tations for images. As a consequence, numerous DWT-based al-
gorithms have been proposed in the past years for ef�cient sig-
nal and image statistical analysis. For instance, wavelet-domain
thresholding provides asymptotically optimal performance in the
case of Gaussian additive noise [1]. The key to noise �ltering
is to transform the signal and the noise to a domain where their
statistics are modeled more ef�ciently, via appropriate orthogonal
transforms. Moreover, wavelet decompositions exhibit twoheuris-
tic properties often termed ”clustering” and ”persistence”: feature-
related wavelet coef�cients (edges or singularities) tendto clus-
ter locally in a subband and to persist across scales, through the
wavelet tree. Recently, algorithms adopted tree-adapted subband-
dependent shrinkage [2, 3]. Also, sophisticated models of the joint
statistics may be useful for capturing key-features in real-world
images. A recent approach relies on Markov random �elds. We
refer to [4, 5] for an rich overview of their use in signal and image
processing. Based on the Hidden Markov Tree framework devel-
oped in [5], H. Choiet al. have proposed ef�cient image denoising
[6] as well as robust SAR segmentation [7].

The proposed work extends the use of hidden Markov mod-
els to a lapped transform (LT) domain. LT are usually viewed as
block-transforms. Though, T. Tranet al. [8] have demonstrated

that well-designed LT are able to improve on DWT for natural im-
age compression, in the Embedded Zerotree [9] framework. In
the context of denoising, the LT coef�cients are rearrangedinto an
octave-like representation. The resulting ”scales” bear the same
clustering and persistence properties as in the wavelet represen-
tation. Moreover, LT design may enforce both orthogonalityand
linear-phase (in contrast to non-Haar 1D wavelets), as wellas at-
tractive additional degrees of freedom in design. In the following,
we �rst brie�y review some properties of the Lapped Transforms.
We then describe the dyadic re-mapping of the transformed coef-
�cients, and basic principles behind Hidden Markov Tree models.
The proposed algorithm is then applied to natural image denois-
ing. We conclude by comments on foreseen improvements of the
present work.
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Fig. 1. Block diagram of the polyphase matrices of a processing
system based on a

�

-band critically sampled �lter bank.

2. LAPPED TRANSFORMS

The Lapped Orthogonal Transform (LOT, [10]) as been devel-
oped to overcome the annoying blocking effects of non overlap-
ping block transforms such as the DCT. More generally, Lapped
transforms are de�ned as linear phase paraunitary �lter banks (FB).
A block diagram of the analysis and synthesis FB pair is givenin
Figure 1. The analysis and the synthesis

�

-band FB polyphase
matrices (� �

� � and � �

� � respectively) provide perfect reconstruc-
tion with zero delay if and only if:

� �

� �

� �

� � � � � �



where � � is the identity matrix [11, p. 304 sq.]. LT may be pa-
rameterized through ef�cient lattice structures for cost-driven op-
timization. We refer to [10, 11, 8] for a comprehensive overview
on Lapped Transforms.

Fig. 2. Dyadic rearrangement of 1D LT coef�cients: (Top) block-
transform with uniform frequency partition, (Bottom) octave-like
representation.
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Fig. 3. Dyadic equivalence between 2D wavelet and LT coef�-
cients: (Left) two-level octave-like representation, (Right) four-
channel block-transform with uniform frequency partition.

LT project signals onto
�

equally spaced frequency bands, in
contrast to the octave-band wavelet representation. When

�

is a
power of 2 (typically 8 or 16), the transformed coef�cients bear
an octave-like grouping, withb

� cde f

�

decomposition levels.
For one group of

�

transformed coef�cients, the DC component
is assigned to the lower scale subband. Then, from low to high
frequencies, theg th subband is formed respectively from the next
group of hi jh coef�cients. The b k l groups are then associated
with respect to the block position in the signal. Figure 2 repre-
sents the dyadic rearrangement from two consecutive blocks. Two
blocks of m

�

h

n

coef�cients (dots on top) intob

� o groups yield
a three-level decomposition (dots on bottom of Fig. 2).

The re-mapping from a four channel block transform to a two
level dyadic transform is depicted in Fig. 3. The right-handside
image is made ofm p m subblocks. Each subblock gatherso

p

o

coef�cients (see the top left subblock), where the black squares
represent the DC component. In a fashion similar to the 1D case,
all the 64 DC coef�cients are grouped into am p m group (top left of
the left-hand side image) representing the low-pass component of
the dyadic representation. Arrows between coef�cients link recip-
rocal locations of coef�cients in the dyadic and the block grouping
scheme. Once wavelet and LT coef�cients share similar grouping,
the same denoising procedure may be applied to both domains.

3. TRANSFORM-BASED DENOISING BASED ON
HIDDEN MARKOV TREE MODEL

Under the additive noise assumption, an image and its noisy ob-
servation is usually modeled as

q

�

r
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�
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(a) (b)

(c) (d)

Fig. 4. (a) Original Barbara image, (b) Wavelet-db8 decomposi-
tion, (c) four-channel DCT block decomposition, (d) dyadicre-
mapping from image (c).

where u is a zero-mean Gaussian noise with known variancev

f

.
Since we have chosen orthogonal transforms,u keeps the same
properties in the transformed domain. The joint probability den-
sity function of the family of images thatt belongs to is often
unattainable. Based on wavelet approximate decorrelation, sim-
pler models have been proposed for coef�cient modeling. The
simplest independent Gaussian models generally obtain improve-
ments from residual inter-coef�cients dependencies.

The Hidden Markov Tree (HMT) model is often described as
a quad-tree structured probabilistic graph that captures the statisti-
cal properties of the wavelet transforms of images. The marginal
pdf is modeled as a Gaussian mixture with two components. The
hidden states refer to the large or small nature of the coef�cient.

Fig. 5. Diagram of a Hidden Markov Tree in a quad-tree. White
dots represent hidden states with arrows as dependencies, black
dots the wavelet coef�cients.



Fig. 6. A segment of the Barbara image, original detail.

Since the coef�cient nature tends to propagate across scales (see
[9, 6]), the Hidden Markov Tree materializes the cross-scale link
between the hidden states. A template HMT is depicted in Fig.5.

The parameters of the HMT model are trained for a set of im-
ages using an Expectation Maximization algorithm. We referto
[5, 6] for details on the implementation of Hidden Markov Trees.

v Noisy (PSNR) db8-HMT LOT-HMT
7.6 30.46 32.82 33.38
12.7 25.98 29.74 30.15
17.8 23.09 27.82 28.21
20.4 21.89 27.01 27.19
22.9 20.92 26.37 26.43
24.2 20.43 26.09 26.16
25.5 19.97 25.93 25.87
33.1 17.73 24.49 24.23

Table 1. HMT denoising results with the Barbara image at several
noise levels (v is the noise standard deviation, PSNR in dB).

4. APPLICATION TO IMAGE DENOISING

The experiments of this work have been performed on the Barbara
image. It is relatively rich in textures that are often oversmoothed
with classical wavelet shrinkage method.

Octave and block-domain representations of the Barbara im-
age are given in Fig. 4. Figure 4b results from a two-level wavelet
decomposition of Fig. 4a with the 8-tap orthogonal Daubechies
wavelet (db8). Though the high-pass coef�cients are low in mag-
nitude (dark tones), edges and texture related coef�cientscluster
and propagate across scales, as observed for ef�cient compres-
sion in [9]. Fig. 4c represents the block transformed image us-
ing a four-channel 8-tap coding gain optimized Lapped Orthogonal
Transform. The brighter pixels are mainly DC components of each

o

p

o subblock. The coef�cients are rearranged to an octave-like
domain in Fig. 4d, according to the procedure described in Sec-
tion 2. For more clarity, the constrast have been enhanced bydis-
playing the square root of the coef�cient magnitudes. It results in
increased brightness for low magnitude cof�cients. As expected,
similar clustering and persistence of coef�cients are observed after
octave remapping.

In the following, we compare results obtained from the db8
wavelet and a coding gain optimized 8-channel 16-tap LappedOr-

(a) Noisy image (26 dB)

(b) db8-HMT (29.74 dB)

(c) LOT-HMT (30.15 dB)

Fig. 7. Barbara image (a) Noisy image at 26 dB, (b) Wavelet result,
(c) LOT result.

thogonal Transform. For fair comparison between the two trans-
forms, the DWT has three levels of decomposition, which gives
equivalent depth to them �

h

n

channels of the Lapped Transform.
Table 1 compares objective results for HMT denoising. Both

transforms yield good denoising performance for the Barbara im-
age, with up to 6 dB improvement on the noisy image at 17-20 dB
noise levels. LT-HMT denoising outperforms the wavelet fornoise
levels above 20 dB. For higher noise levels, the LOT performance
decreases in PSNR.

Figures 7 and 8 display a detail from Barbara (Fig. 8) at
25.98 dB and 19.97 dB PSNR noise level respectively. Figure 7
demonstrates that even with a weak PSNR improvement (0.4 dB),
edges and textures are better preserved with the LOT than with the
wavelet. It can be seen from the diagonal stripes of the scarfon
the bottom center of the picture. Vertical details on the background
wicker chair are also slightly oversmoothed with the wavelet trans-
form.



(a) Noisy image (20.43 dB)

(b) db8-HMT (26.09 dB)

(c) LOT-HMT (26.16 dB)

Fig. 8. A segment of the Barbara image at 20.43 dB (a) Noisy
image, (b) Wavelet result, (c) LOT result.

In Figure 8, the PSNR is slightly higher after wavelet-based
HMT denoising. Textures are nevertheless better preservedwith
LT-based denoising, as wavelet oversmoothing clearly appear.

5. CONCLUSIONS

We propose a Hidden Markov Tree based denoising algorithm in
the Lapped Transform domain. It relies on a octave-like re-mapping
of the LT coef�cients. In this scheme, a 8-channel 16-tap LOTis
able to outperform wavelets in PSNR for moderate noise level.
At higher noise levels, it preserves textures and edges better. The
proposed method inherits from some of the LOT attractive proper-
ties (orthogonality, linear phase and robustness to oversmoothing)
combined with the effectiness of the Hiddden Markov Tree mod-
eling of the image features across scales.

Future developments will involve an increase of the decompo-
sition level by applying a wavelet transform to the lower octave

band of both the wavelet and the LT decomposition, as well as the
design of LT to increase the sparse nature of the decomposition.
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