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Summary

Wavelet related techniques have been proved successful in many seismic processing applications, such as
filtering or compression. While seismic data compression is not yet widely accepted, we propose a com-
pression based on filter banks as a means to remove uncoherent noise from seismic data, and thus improve
the SNR. Results are demonstrated on synthetic data.

Introduction and overview of time-frequency techniques

If we let data analysis aside, two main applications have demonstrated the power of the wavelet transform:

� seismic data compression [Chen, 1995, Donoho et al., 2000];

� coherent or uncoherent noise attenuation [Miao and Cheadle, 1998].

Several authors, e. g. Vermeer et al. [1996], have recently recognized that wavelets may not be the best fit for
seismic data since they present large-scale oscillations. They have therefore investigated for instance wavelet
packets, local cosine or Gabor transforms. We focus here on filter banks (FB), which can be regarded as a
multichannel generalization of wavelets [Duval and Røsten, 2000]. Instead of iterating one low-pass and one
high-pass filter, we directly use a FB composed ofM > 2 band-pass filters. The signal is decomposed into
localized time-frequency coefficients, which are processed according to the target purpose (i. e. denoising
or compression).

Noise attenuation and data compression require analogous qualities from a transform. One of the main ben-
efits of time-frequency representations is that one can act on local frequency features of the signal without
disturbing frequency features located elsewhere, as opposed to the global effect of band-pass filtering in the
Fourier domain.

The compression program employed here uses two different FBs along the space and the time directions,
instead of the traditional wavelet decomposition. Filter banks used in this study are the Walsh-Hadamard
transform and a 8-channel 16-tap biorthogonal FB that together yield good compression performance. The
transform coefficients are then parsed from the biggest to the smallest ones (in magnitude), while taking
care of the coefficient time-frequence dependency. We refer to Duval and Røsten [2000] and its references
for a more detailed treatment on filter banks and a description of the compression algorithm.

Why may compression cancel uncoherent noise?

Figure 1 represents a shot gather resulting from elastic modeling based on an actual well log. The synthetic
model signalmt;x being free from uncoherent noise (up to modeling and computational uncertainties), we
add a gaussian white noisent;x with various levels, resulting in a noisy signalst;x = mt;x + nt;x. The
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Figure 1: Noise free model shot gather (a), with SNRn = 17.8 dB (b), with SNRn = 2.3 dB (c).

corresponding noisy signal-to-noise ratio (SNRn) is calculated using the classical formula:

SNRn = 10 log10

P
m2

t;x
P
n2t;x

:

Two noisy versions of the shot gather are depicted in Fig. 1 (b–c).

In classical data compression applications, one usually considers the compression induced erroret;x added
to the original signalst;x, which already contains more natural uncoherent noise. The SNR for the com-
pressed signalct;x = st;x + et;x is defined as SNRc = 10 log10

P
s2t;x=

P
e2t;x: It generally decreases as the

compression ratio (CR) increases. But since noise attenuation and data compression generally share similar
features, we hope that careful data compression could serve as a denoising tool. From a very simple point of
view, let us assume thatst;x is decomposed by a linear time-frequency transformT : T (s) = T (m) + T (n):
Compression generally quantizes and thresholds some time-frequency coefficients. Uncoherent noises are
difficult to compress, since they are mostly unpredictable. Instead of trying to represent them faithfully in
the time-frequency domain, we can discard them during compression. As a result, the quantityT (n) could
be reduced and the compressed signalct;x will look like the underlying signalmt;x a little more. We now
define the SNR to model as SNRm = 10 log10

P
m2

t;x=
P
(ct;x �mt;x)

2, and try to reach the unequality
SNRm � SNRn, via compression.

Results: reproducibility on different noise realizations
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Figure 2: (a) Denoising realizations for a SNR of 11.8 dB. (b) Distorsion curves at various SNRs.

The first experiments test the reproducibility of noise removal. Four realizations of a gaussian white noise
are added to the model data, with a constant SNRn of 11.8 dB. The noisy shot gather then undergoes



compression at various ratios, defined as the number of signal samples (e. g. 60) represented by a single
compressed sample. CRs vary here from1 : 1 (no compression) to60 : 1.

The horizontal straight line from Fig. 2 (a) represents the initial noise level. The four other curves represent
realizations of denoising, the y-axis representing the SNRm between the model and the compressed signal
at several compression ratios (on the x-axis). The first observation is the four experiments show similar
behaviour. Between CRs of 1 and 50, the distorsion curves lie above the initial noise level. This means
that in a least square sense, the compressed signal is closer to the underlying model signal, i. e. a little
compression improves the quality of the recorded signal, since some uncoherent noise has been canceled
out by the compression.

Nevertheless, for CR> 50, SNRm becomes lower than the noisy SNRn. SNRm reaches a maximum, which
could be a compression target, since it provides an optimum in a least-square sense.

Results: compression behaviour at different noise levels

Figure 2 (b) displays the results of compression denoising from several initial SNRs. Each curve pair may
be read as follows, in a similar way as in the preceeding chapter: a straight line denotes the initial SNRn and
the curves sharing the same origin represent the SNRm calculated at several compression ratios.

Observations are somewhat similar to the former example: between low (near to 1) and moderate CRs,
compression usually results in an improvement over the initial noisy signal. The compression range where
SNRm � SNRn tends to broaden as the initial noise variance increases: the CR at which SNRm becomes
lower than SNRn increases as SNRn decreases.

These observations are supported by Fig. 3. It displays the compression result for near (left panel) and far
offset (right panel) traces for initial SNRn of 17.8 dB (top) and 2.3 dB (bottom), cf. Fig. 1. The chosen
compression ratios correspond to the maximum of the SNRm curve. Fig. 3 can be read as follows, from top
to bottom: model trace, noisy trace, noisy trace after compression, initial noise, noise after compression.
The two later noise plots share the same amplitude scale. We observe that after compression, ambient noise
added to the data has been partialy reduced by compression, thus enhancing the data quality.

Conclusions

Common knowledge states that lossy compression generally adds noise to the data. In contrast, we have
shown that, when ambient uncorrelated noise is present, careful compression may improve the signal-to-
noise ratio to the underlying data, providing guidelines for seismic compression on acquisition.
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Figure 3: Compression denoising with SNRn = 17.8 dB and CR = 23 (top) and SNRn = 2.3 dB and CR =
65 (bottom) for a near offset (left panel) and a far offset trace (right panel).


