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Summary

The use of discrete wavelet based analysis, feature extraction,
denoising, and compression methods have led to extremely
interesting developments in the field of seismic data processing.
Notwithstanding, discrete wavelets belong to a wider class of
filter banks. The use of more general filter banks allows the
design of filter coefficients matching the signal’s properties.
Consequently, general filter banks bring forth the performance
of discrete wavelet based seismic data processing techniques. In
this paper, we discuss basics of general filter bank theory, and
its applications to seismic data compression and denoising. We
show that properly designed filter banks are able to outperform
discrete wavelets in both instances.

Introduction

From a very simplistic point of view, seismic signals can be
viewed as a combination of three types of components: pure
geophysical or geological information, redundancy of this
information, and noise or alterations arising from different kinds
of sources. This combination results in the unformal equation

seismic signal = information + redundancy + noise.

Each and every task capable of separating information, decreas-
ing redundancy, and suppressing noise is generally not per-
formed by one single method, but oftenly involves many geo-
physical processing tools. Besides, many seismic applications,
including analysis, denoising, processing, and data management
(e.g., data access, visualization, and compression) oftenly pro-
vide a concentration of seismic information. By reducing the
dynamic range of the seismic data in some way, it is possible
to discard redundancy and uncoherent noise in the seismic data
set. Discrete wavelets provide such a representation. They have
successfully been applied to seismic data analysis (Foster et al.,
1997), to seismic signal denoising (Miao and Cheadle, 1998),
and to seismic data compression (Villasenor et al., 1996).

Using a discrete wavelet formalism, wavelet decomposition is
based on a low-pass and a high-pass filter, employed in an iter-
ative scheme. Depending on the scheme used, such an iteration
leads for example to the discrete wavelet transform (DWT) or
to the discrete wavelet packet transform (DWPT). A decomposi-
tion scheme involving several stages of filters and sampling op-
erators (e.g., upsampling and downsampling), is generally called
a filter bank (FB for short) system. But FB theory is more gen-
eral than discrete wavelets by involving more than 2 filters and
having several different iterative schemes.

Since discrete wavelet decomposition is based on only 2 filters,
discrete wavelets suffer from lacks in filter design abilities, as
shown for compression by Røsten et al. (1999) and Duval and
Nguyen (1999). In order to demonstrate their powerfulness we
focus in this paper on more general filter banks, and their ef-
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Fig. 1: 2-channel analysis and synthesis filter banks.

fectiveness for seismic data decomposition. The paper is orga-
nized as follows: first, we briefly recall some aspects of discrete
wavelets, leading us to expose more general filter banks. Then,
we describe how filter banks act on the data, and how FBs can be
designed (application dependently) in order to match the prop-
erties of the seismic data. Advantages of general FBs over dis-
crete wavelets are demonstrated for both data compression and
denoising. The results exposed are obtained on actual marine
field data: compression is applied to a 2-D common offset gather
(COG) and denoising to a trace from the same COG.

Discrete wavelets

Fig. 1 shows a 2-channel filter bank system. At the analysis
side, the input signalx is filtered by a low-pass filterh0 and a
high-pass filterh1 (i.e., 2-channel case). The outputs of the fil-
ters are maximally decimated or downsampled by 2, i.e., every
second sample is removed. The analysis FB splitsx into s, a
coarse and smoother approximation (low-pass filtered version)
of x, and intod, a detail signal (high-pass filtered version ofx)
from which the coarse approximations and the original signal
x differ. The resulting analysis decomposition is non-expansive:
the number of coefficients after the analysis filtering is the same
as the number of input samples due to the downsampling proce-
dure. At the synthesis side, thes andd are upsampled by 2 (one
zero is inserted between every second sample). Then the two up-
sampled signals are filtered by the corresponding low-pass and
high-pass synthesis filters, denotedg0 andg1, respectively. The
reconstructed signal̂x finally follows by a summation at the end.
The signalx can be perfectly reconstructed, i.e.,x = x̂, if the
analysis and synthesis filters obey a so-called perfect reconstruc-
tion (PR) condition. That is, the synthesis FB cancels distortions
introduced by the analysis FB.
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The special case of DWT is based on a repeated low-pass analy-
sis filtering of the approximations, and results in a non-uniform
filter bank with a so-called dyadic decomposition. In the 2-D
case, one can apply a 1-level DWT decomposition first in the
temporal direction and second in the spatial direction, and then
iterate the DWT analysis filtering procedure on the lowpass-
lowpass subband (see Fig. 2 (a)). An alternative is to apply an
L-level DWT decomposition first in time and second in space.
The choice of thehi andgi filters is crucial. We refer to the
book by Strang and Nguyen (1996) for a comprehensive survey
of the construction of discrete wavelets. In the case of 2-channel
(andM -channel) filter banks, we can divide the filters into three
classes:

i) orthogonal PR filter banks: they generate an orthogonal
basis for signal decomposition.h1, g0, andg1 are retrieved
from h0;

ii) biorthogonal PR filter banks: they generate two bases
where thehi ’s are orthogonal to thegi’s, but the two bases
are not mutually orthogonal.g1 andh1 are derived from
h0 andg0, respectively;

iii) nonunitary filter banks.

Orthogonal bases, like the discrete Karhune-Lo`eve transform,
generally provide easier separation between signal and white
noise components. For instance, Ioup and Ioup (1998) uses the
orthogonal Daubechies Db20 wavelet for denoising, and shows
its advantages over standard Fourier filtering. Nevertheless, the
orthogonality constraint is a very strong condition in 2-channel
FB design. For instance, it is not possible to have both orthog-
onal and symmetric (linear phase) filters except for trivial cases
like for example the Haar wavelet. The orthogonality constraint
is relaxed for biorthogonal and nonunitary filter banks. As a
consequence, in the 2-channel case, they may simultaneously
be PR and have linear phase – non-trivial – filter coefficients.
The linear phase property is oftenly used to avoid phase distor-
tion. Miao and Cheadle (1998) used the popular 9/7 biorthogo-
nal linear phase wavelet in noise attenuation of seismic data. At
the same time, many data compression applications involve the
same 9/7 biorthogonal wavelet (e.g., Villasenor et al., 1996) or
nonunitary filter banks (e.g., Røsten et al., 1999).

Some authors (see e.g., Vermeer et al., 1996), have pointed out
that the DWT might not be the best suited decomposition scheme
since it lacks accuracy in the high frequency subbands. Further-
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Fig. 2: 2-level dyadic (a) and 4-channel uniform (b) decomposition.
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Fig. 3: Orth. and biorth. FBs are subsets of nonunitary FBs. Similarly,
orth. and biorth. wavelets are subsets of ortho. and biorth. FBs.

more, a 2-channel FB intuitively possesses less degrees of free-
dom than FBs having three or more channels. Simultaneously
orthogonality and linear phase constraints, in theM -channel
case,M > 2, are easier to meet since more filters add more co-
efficients to be tuned. By relaxing the orthogonality or biorthog-
onality constraint in the design ofM -channel FBs, even greater
degrees of freedom will arise (see Fig. 3).

General filter banks

Advances in digital signal processing have led to a more generic
formalism for filter banks. A general structure of a maximally
decimatedL + 1-channel analysis FB is given in Fig. 4. The
1-D input signalx is split intoL + 1 number of subbands by
an analysis filter bank. The downsampling coefficients�i are
subject to the condition

LX
i=0

1=�i = 1; (1)

in order to keep the decomposition non-expensive. The special
caseL = 1, i.e., a 2-channel FB with�0 = �1 = 2, represents
a 1-level DWT. AnL + 1-channelparallel analysis filter bank
with �0 = 2L and

�i = 2L+1�i; 1 � i � L; (2)

has equivalent decomposition appearance to anL-level DWT. In
the rest of the paper, we will mainly focus on uniform decompo-
sitions by general filter banks, setting all�i ’s toM ,M = L+1.
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Fig. 2 (b) displays a uniform decomposition by utilizing a 4-
channel FB in two directions. The design and properties of filter
banks depend on the targeted applications. An overview is given
in the next section. We refer to Ramstad et al. (1995) for detailed
issues on the design of general filter banks.

Filter bank design

The analysis filter bank is usually optimized to decorrelate the
input signal, and this is obtained by maximizing the so-called
coding gain. Additional practical constraints can be placed on
the type of splitting and on length of the filters. For our purpose,
we restrict to 8-channel 32-tap (each filter has 32 coefficients)
linear phaseFBs, i.e.,M = 8 andK = 32. The 1-D coding
gainG of a uniform M -channelK-tap FB is in dB given by
(see e.g., Røsten et al., 1999)

G = 10 log10

"
M�1Y
i=0

Ai

#
�1=M

; (3)

provided that the synthesis filters have unit norm. TheAi’s in
equation (3) can be calculated from the analysis filters and the
autocorrelation function (acf)rxx of the input signal:

Ai =

K�1X
j=0

K�1X
k=0

hi(j)hi(k)rxx(j � k): (4)

From equation (4) it is evident that we need to know the acf of
the input signal to maximize equation (3). In the 2-D case, we
have to investigate the sample to sample correlations both tem-
porally and spatially. We choose a directional dependent sep-
arable statistical model with different zero-mean autoregressive
(AR) processes to represent the acfs in the two directions.

For the particular case of common offset gathers, an AR(2) with
�1 = 0:62 and�2 = 0:10 and an AR(1) with�1 = 0:70 are
utilized vertically and horizontally, respectively (Røsten et al.,
1999). The coefficient� with subscript1 and2 denotes normal-
ized correlation coefficient at lag one and two.

The 8-channel 32-tap linear phase filter banks are optimized us-
ing suitable error terms for near PR, removal of blocking effects,
high coding gain, and good stopband attenuation. Hence, a suit-
able error function" is

" = wP "P + wB"B + wG"G + wS"S;

where subscriptsP , B, G, andS denote PR, blocking effects,
coding gain, and stopband attenuation, respectively."G is given
by inverting equation 3. Full details can be found in (Ramstad et
al., 1995; de Queiroz et al., 1996). Thewi ’s are proper weighting
factors.

We optimize two different filter bank systems both in time (sub-
script T) and space (subscript S): FB-IT,S and FB-IIT,S. FB-I

Filter FB-IT FB-IIT FB-IS FB-IIS

G 3.07 2.91 2.87 2.81

Table 1: Coding gains in dB.

is a nonunitarynear-PR filter bank (Røsten et al., 1999) while
FB-II is an orthogonalfilter bank called GenLOT (Duval and
Nguyen, 1999). For convenience,wS = 0 for FB-I since high
stopband attenuation is more important for orthogonal denoising
filter banks. Since FB-II is PR,wP = 0 for that filter bank sys-
tem. For reference, Table 1 gives the resulting coding gain for
the two optimized filter bank systems. Nonunitary FBs gener-
ally offer higher coding gains than orthogonal and biorthogonal
FBs.

Applications

Depending on the application, additional stages are generally
inserted between the analysis and the synthesis filter bank. I.e.,
an encoding block is utilized for seismic data compression, and
a noise removal block is applied for denoising.

Lossy seismic data compression

In filter bank based lossy data compression, the subband coef-
ficients are quantized, and finally encoded in an efficient way.
Specifically, we apply the lossy data compression algorithm
detailed in (Duval and Nguyen, 1999). This compression
algorithm is based on an embedded coding scheme which
progressively encodes and transmits the quantized and re-
ordered subband coefficients by magnitude value. Three FBs
are compared in the 2-D separable decomposition: the popular
9/7 biorthogonal wavelet (in both time and space), in addition
to FB-IT,S and FB-IIT,S.

We compress a common offset gather containing 1101 number
of shots with 870 time samples each. The compression ratio is
ranging from15 : 1 to 60 : 1. Fig. 5 shows that the coding
gain optimized FBs, i.e., FB-I and FB-II, perform at least 3.5 dB
better – in terms of signal-to-noise ratio (SNR) – than the 3-level
9/7 biorthogonal wavelet. FB-I and FB-II offer for all practical
purposes the same results.

White noise attenuation

As a second filter bank example with relevance to seismic,
we investigate a simple ”hard” threshold method for denois-
ing (Strang and Nguyen, 1996). A seismic trace from the
common offset gather, or to be more correct the first 512 time
samples of that trace, is corrupted with additive white Gaussian
noise (AWGN) (see Fig. 6). After 1-D analysis filtering, sub-
band coefficients below a certain threshold are set to zero. More
sophisticated methods using ”soft” or adaptive thresholding are
under investigation.

The ”denoised” seismic signal is reconstructed from the remain-
ing subband coefficients through a corresponding 1-D synthesis
filter. We use 4 different filter banks in this study: three of them
based on the orthogonal Daubechies Dd20 wavelet with dyadic
decomposition having 1, 3, and 5 number of levels, respectively.
The last FB is the orthogonal and optimized FB-IIT. We have
compared the mean squared error (MSE) between the original
and the denoised trace, using several thresholds, as shown in
Fig. 7. We can see that the MSE level for FB-IIT is, indepen-
dently of the number of dyadic levels, almost always under those
for the orthogonal Daubechies Db20 wavelet. That is, threshold-
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Fig. 6: Original data (top) and noisy data (bottom); MSE= 34:6.

ing the subband coefficients with FB-IIT results in an improve-
ment of discrete wavelet based denoising. Furthermore, there
is no need to choose a decomposition level, and denoising can
easily be performed locally on subsets of 32 coefficients. A rea-
sonable explanation for this better behavior is that the FB-IIT is
designed to have good stopband attenuation, and thus matches
the signal’s frequency response better. Remark, we also can see
that discarding more subband coefficients would result in more
signal degradation: the MSE increases after the optimal thresh-
old (obtained with the minimum MSE).

Conclusions

In this paper, we have demonstrated a flexible use of filter banks
for both seismic data compression and noise attenuation.
It is possible to design optimized filter banks application
dependently: for instance, high coding gain helps to further
decorrelate the seismic data and to concentrate the significant
information of seismic data in a small number of coefficients,
improving the results of seismic data compression. It is also
possible to design the frequency responses of the analysis and
synthesis filters to more efficiently separate signal from noise
components. General filter banks are able to outperform discrete
wavelets in both compression and noise attenuation. In addition,
general filter banks have the feature of a more localized effect,
thus overcoming some of the signal’s unstationarities.
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Fig. 7: Denoising with increasing thresholds. FB-IIT vs. Db20 using 1,
3, and 5 dyadic decomposition levels.
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