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Noise Covariance Properties in Dual-Tree
Wavelet Decompositions
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Abstract—Dual-tree wavelet decompositions have recently
gained much popularity, mainly due to their ability to provide an
accurate directional analysis of images combined with a reduced
redundancy. When the decomposition of a random process is
performed—which occurs in particular when an additive noise is
corrupting the signal to be analyzed—it is useful to characterize
the statistical properties of the dual-tree wavelet coefficients of
this process. As dual-tree decompositions constitute overcomplete
frame expansions, correlation structures are introduced among
the coefficients, even when a white noise is analyzed. In this paper,
we show that it is possible to provide an accurate description
of the covariance properties of the dual-tree coefficients of a
wide-sense-stationary process. The expressions of the (cross-)
covariance sequences of the coefficients are derived in the one-
and two-dimensional cases. Asymptotic results are also provided,
allowing to predict the behavior of the second-order moments
for large lag values or at coarse resolution. In addition, the
cross-correlations between the primal and dual wavelets, which
play a primary role in our theoretical analysis, are calculated for a
number of classical wavelet families. Simulation results are finally
provided to validate these results.

Index Terms—Covariance, cross-correlation, dependence, dual-
tree, filter banks, frames, Hilbert transform, noise, random pro-
cesses, stationarity, statistics, wavelets.

I. INTRODUCTION

THE discrete wavelet transform (DWT) [1] is a powerful
tool in signal processing, since it provides “efficient” basis

representations of regular signals [2]. It nevertheless suffers
from a few limitations such as aliasing effects in the transform
domain, coefficient oscillations around singularities, and a lack
of shift invariance. Frames (see [3], [4] or [5] for a tutorial),
reckoned as more general signal representations, represent an
outlet for these inherent constraints laid on basis functions.

Redundant DWTs (RDWTs) are shift-invariant nonsubsam-
pled frame extensions to the DWT. They have proved more error
or quantization resilient [6]–[8], at the price of an increased
computational cost, especially in higher dimensions. They do
not, however, take on the lack of rotation invariance or poor di-
rectionality of classical separable schemes. These features are
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particularly sensitive in image and video processing. Recently,
several other types of frames have been proposed to incorpo-
rate more geometric features, aiming at sparser representations
and improved robustness. Early examples of such frames are
shiftable multiscale transforms or steerable pyramids [9]. To
name a few others, there also exist contourlets [10], bandelets
[11], curvelets [12], phaselets [13], directionlets [14], or other
representations involving multiple dictionaries [15].

Two important facets need to be addressed, when resorting to
the inherent frame redundancy:

1) multiplicity: frame reconstructions are not unique in
general;

2) correlation: transformed coefficients (and especially those
related to noise) are usually correlated, in contrast with the
classical uncorrelatedness property of the components of a
white noise after an orthogonal transform.

If the multiplicity aspect is usually recognized (and often
addressed via averaging techniques [6]), the correlation of the
transformed coefficients have not received much consideration
until recently. Most of the efforts have been devoted to the
analysis of random processes by the DWT [16]–[19]. It should
be noted that early works by Houdré et al. [20], [21] consider
the continuous wavelet transform of random processes, but
only in a recent work by Fowler [22] exact energetic relation-
ships for an additive noise in the case of the nontight RDWT
have been provided. It must be pointed out that the difficulty
to characterize noise properties after a frame decomposition
may limit the design of sophisticated estimation methods in
denoising applications.

Fortunately, there exist redundant signal representations al-
lowing finer noise behavior assessment: in particular, the dual-
tree wavelet transform, based on the Hilbert transform, whose
advantages in wavelet analysis have been recognized by sev-
eral authors [23], [24]. It consists of two classical wavelet trees
developed in parallel. The second decomposition is refered to
as the “dual” of the first one, which is sometimes called the
“primal” decomposition. The corresponding analyzing wavelets
form Hilbert pairs [25, p. 198 sq]. The dual-tree wavelet trans-
form was initially proposed by Kingsbury [26] and further in-
vestigated by Selesnick [27] in the dyadic case. An excellent
overview of the topic by Selesnick, Baraniuk, and Kingsbury
is provided in [28] and an example of application is provided
in [29]. We recently have generalized this frame decomposi-
tion to the -band case (see [30]–[32]). In the later
works, we revamped the construction of the dual basis and the
preprocessing stage, necessary in the case of digital signal anal-
ysis [33], [34] and mandatory to accurate directional analysis
of images, and we proposed an optimized reconstruction, thus
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addressing the first important facet of the resulting frame mul-
tiplicity. The -band dual-tree wavelets prove more
selective in the frequency domain than their dyadic counterparts,
with improved directional selectivity as well. Furthermore, a
larger choice of filters satisfying symmetry and orthogonality
properties is available.

In this paper, we focus on the second facet, correlation, by
studying the second-order statistical properties, in the trans-
form domain, of a stationary random process undergoing a
dual-tree -band wavelet decomposition. In practice, such a
random process typically models an additive noise. Preliminary
comments on dual-tree coefficient correlation may be found
in [35]. Dependencies between the coefficients already have
been exploited for dual-tree wavelet denoising in [36], [37].
A parametric nonlinear estimator based on Stein’s principle,
making explicit use of the correlation properties derived here,
is proposed in [38]. At first, we briefly recall some properties of
the dual-tree wavelet decomposition in Section II, refering to
[32] for more detail. In Section III, we express in a general form
the second-order moments of the noise coefficients in each tree,
both in the one- and two-dimensional cases. We also discuss the
role of the post-transform—often performed on the dual-tree
wavelet coefficients—with respect to (w.r.t.) decorrelation. In
Section IV, we provide upper bounds for the decay of the cor-
relations existing between pairs of primal/dual coefficients as
well as an asymptotic result concerning coefficient whitening.
The cross-correlations between primal and dual wavelets
playing a key role in our analysis, their expressions are derived
for several wavelet families in Section V. Simulation results
are provided in Section VI in order to validate our theoretical
results and better evaluate the importance of the correlations
introduced by the dual-tree decomposition. Some final remarks
are drawn in Section VII.

Throughout the paper, the following notations will be used:
, , , , , , , and are the set of integers, nonzero

integers, nonnegative integers, positive integers, reals, nonzero
reals, nonnegative reals, and positive reals, respectively. Let
be an integer greater than or equal to , ,
and .

II. -BAND DUAL-TREE WAVELET ANALYSIS

In this section, we recall the basic principles of an -band
[39] dual-tree decomposition. Here, we will focus on 1-D real
signals belonging to the space of square integrable func-
tions. Let be an integer greater than or equal to . An -band
multiresolution analysis of is defined using one scaling
function (or father wavelet) and mother
wavelets , . In the frequency domain, the
so-called scaling equations are expressed as:

(1)

where denotes the Fourier transform of a function .
In order to generate an orthonormal -band wavelet basis

Fig. 1. A pair of primal (top) and dual (bottom) analysis/synthesis M -band
para-unitary filter banks.

of , the following para-unitarity conditions must hold:

(2)

where if and otherwise. The filter with fre-
quency response is low-pass whereas the filters with fre-
quency response , (resp.,

) are bandpass (resp., high-pass). In this case, cascading the
-band para-unitary analysis and synthesis filter banks, repre-

sented by the upper structures in Fig. 1, allows us to decompose
and to perfectly reconstruct a given signal.

A “dual” -band multiresolution analysis is built by defining
another -band wavelet orthonormal basis associated with a
scaling function and mother wavelets , . More
precisely, the mother wavelets are the Hilbert transforms of the
“original” ones , . In the Fourier domain, the de-
sired property reads

(3)

where is the signum function. Then, it can be proved [31]
that the dual scaling function can be chosen such that

if
otherwise

(4)

where is an arbitrary integer delay. The corresponding anal-
ysis/synthesis para-unitary Hilbert filter banks are illustrated by
the lower structures in Fig. 1. Conditions for designing the in-
volved frequency responses , , have been recently
provided in [32]. As the union of two orthonormal basis decom-
positions, the global dual-tree representation corresponds to a
tight frame analysis of .

III. SECOND-ORDER MOMENTS OF THE NOISE

WAVELET COEFFICIENTS

In this part, we first consider the analysis of a one-dimen-
sional, real-valued, wide-sense-stationary and zero-mean noise

, with autocovariance function

(5)

We then extend our results to the two-dimensional case.
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A. Expression of the Covariances in the 1-D Case

We denote by the coefficients resulting from a
1-D -band wavelet decomposition of the noise, in a given sub-
band where and . In the subband,
the wavelet coefficients generated by the dual decomposition are
denoted by . At resolution level , the statistical
second-order properties of the dual-tree wavelet decomposition
of the noise are characterized as follows.

Proposition 1: For all ,
is a wide-sense-stationary vector sequence. More precisely, for
all and , we have

(6)

(7)

(8)

where the deterministic cross-correlation function of two real-
valued functions and in is expressed as

(9)

Proof: See Appendix I.

The classical properties of covariance/correlation functions
are satisfied. In particular, since for all , and

are unit norm functions, for all , the ab-
solute values of , , and are upper-
bounded by . In addition, the following symmetry properties
are satisfied.

Proposition 2: For all with or
, we have . As a consequence

(10)

When , we have

(11)

and, consequently

(12)

Besides, the function is symmetric w.r.t. ,
which entails that is symmetric w.r.t. .

Proof: See Appendix II.

As a particular case of (10), when , it appears that the
sequences and have the same auto-
covariance sequence. We also deduce from Proposition 2 that,

for all , is an odd function, and the cross-covari-
ance is an odd sequence. This implies, in particular,
that for all

(13)

The latter equality means that, for all and ,
the random vector has uncorrelated com-
ponents with equal variance.

The previous results are applicable to an arbitrary stationary
noise but the resulting expressions may be intricate depending
on the specific form of the autocovariance . Subsequently, we
will be mainly interested in the study of the dual-tree decom-
position of a white noise, for which tractable expressions of the
second-order statistics of the coefficients can be obtained. The
autocovariance of is then given by , where

denotes the Dirac distribution. As the primal (resp., dual)
wavelet basis is orthonormal, it can be deduced from (6)–(8)
(see Appendix III) that, for all and

(14)

(15)

where is the Kronecker sequence ( if
and otherwise). Therefore, and
are cross-correlated zero-mean, white random sequences with
variance .

The determination of the cross-covariance requires the com-
putation of . We distinguish between the mother

and father wavelet case.
• By using (3), for , the Parseval–Plancherel formula

yields

(16)

where denotes the imaginary part of a complex .
• According to (4), for we find, after some simple

calculations

(17)

where denotes the real part of a complex .
In both cases, we have

(18)

For -band wavelet decompositions, selective filter banks are
commonly used. Provided that this selectivity property is satis-
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fied, the cross term can be expected to be close
to zero and the upper bound in (18) to take small values when

. This fact will be discussed in Section VI-C based on
numerical results. On the contrary, when , the cross-cor-
relation functions always need to be evaluated more carefully.
In Section V, we will therefore focus on the functions

(19)

(20)

Note that, in this paper, we do not consider interscale correla-
tions. Although expressions of the second-order statistics sim-
ilar to the intrascale ones can be derived, sequences of wavelet
coefficients defined at different resolution levels are generally
not cross-stationary [18].

B. Extension to the 2-D Case

We now consider the analysis of a 2-D noise , which is also
assumed to be real, wide-sense-stationary with zero-mean and
autocovariance function

We can proceed similarly to the previous section. We denote by
the coefficients resulting from a 2-D separable

-band wavelet decomposition [39] of the noise, in a given
subband . The wavelet coefficients of the
dual decomposition are denoted by . We obtain
expressions of the covariance fields similar to (6)–(8): for all

, , ,
, and

(21)

(22)

(23)

From the properties of the correlation functions of the wavelets
and the scaling function as given by Proposition 2, it can be
deduced that, when ( or ) and (

or )

(24)

Some additional symmetry properties are straightforwardly ob-
tained from Proposition 2. In particular, for all , the
cross-covariance is an even sequence. An important
consequence of the latter properties concerns the linear
combination of the primal and dual wavelet coefficients which
is often implemented in dual-tree decompositions. As explained
in [31], the main advantage of such a post-processing is to better
capture the directional features in the analyzed image. More pre-
cisely, this amounts to performing the following unitary trans-
form of the detail coefficients, for :

(25)

(26)

(The transform is usually not applied when or
.) The covariances of the transformed fields of noise coeffi-

cients and then take the following
expressions.

Proposition 3: For all and

(27)

(28)

(29)

Proof: See Appendix IV.

This shows that the post-transform not only provides a better
directional analysis of the image of interest but also plays an im-
portant role w.r.t. the noise analysis. Indeed, it allows to com-
pletely cancel the correlations between the primal and dual noise
coefficient fields obtained for a given value of . In turn,
this operation introduces some spatial noise correlation in each
subband.

For a 2-D white noise, and the coeffi-
cients and are such that, for all

(30)

(31)

As a consequence of Proposition 2, in the case when
, we conclude that, for or and ,

the vector has uncorrelated components
with equal variance. This property holds more generally for
2-D noises with separable covariance functions.

IV. SOME ASYMPTOTIC PROPERTIES

In the previous section, we have shown that the correlations of
the basis functions play a prominent role in the determination of
the second-order statistical properties of the noise coefficients.
To estimate the strength of the dependencies between the co-
efficients, it is useful to determine the decay of the correlation
functions. The following result allows to evaluate their decay.

Proposition 4: Let and de-
fine . Assume that, for all , the
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function is times continuously differentiable on
and, for all , its th-order derivatives

belong to .1 Further assume that, for all ,
as . Then, there exists such

that, for all

(32)

and

(33)

Proof: See Appendix V.

Note that, for all , the assumptions concerning
are satisfied if is times continuously

differentiable on and, for all , its
th-order derivatives belong to . Indeed, if is

times continuously differentiable on , so is .
The Leibniz formula allows us to express its derivative of order

as

Consequently, if for all , , then
.

Note also that, for integrable wavelets, the assumption
as means that the wavelet ,

, has vanishing moments.
Therefore, the decay rate of the wavelet correlation functions

is all the more important as the Fourier transforms of the basis
functions , , are regular (i.e., the wavelets have
fast decay themselves) and the number of vanishing moments is
large. The latter condition is useful to ensure that Hilbert-trans-
formed functions have regular spectra as well. It must be
emphasized that Proposition 4 guarantees that the asymptotic
decay of the wavelet correlation functions is at most .
A faster decay can be obtained in practice for some wavelet fam-
ilies. For example, when is compactly supported,
also has a compact support. In this case, however, cannot be
compactly supported [32], so that the bound in (33) remains of
interest. Examples will be discussed in more detail in Section V.

It is also worth noticing that the obtained upper bounds on the
correlation functions allow us to evaluate the decay rate of the
covariance sequences of the dual-tree wavelet coefficients of a
stationary noise as expressed below.

Proposition 5: Let be a 1-D zero-mean wide-sense-sta-
tionary random process. Assume that either is a white noise
or its autocovariance function is with exponential decay, that is
there exist and , such that

(34)

Consider also functions , , satisfying the assump-
tions of Proposition 4. Then, there exists such that for
all , , and

(35)

1By convention, the derivative of order 0 of a function is the function itself.

(36)

Proof: See Appendix VI.

The decay property of the covariance sequences readily ex-
tends to the 2-D case:

Proposition 6: Let be a 2-D zero-mean wide-sense-sta-
tionary random field. Assume that either is a white noise or its
autocovariance function is with exponential decay, that is, there
exist and , such that

(37)

Consider also functions , , satisfying the assump-
tions of Proposition 4. Then, there exists such that for
all , , and

(38)

(39)

Besides, for all , , and

(40)

(41)

Proof: Due to the separability of the 2-D dual-tree wavelet
analysis, (38) and (39) are obtained quite similarly to (35) and
(36). The proof of (40) and (41) then follows from (27) and (28).

The two previous propositions provide upper bounds on the
decay rate of the covariance sequences of the dual-tree wavelet
coefficients, when the norm of the lag variable ( or ) takes
large values. We end this section by providing asympotic results
at coarse resolution (as ).

Proposition 7: Let be a 1-D zero-mean wide-sense-sta-
tionary process with covariance function .
Then, for all , we have

(42)

(43)

Proof: See Appendix VII.

In other words, at coarse resolution in the transform domain,
a stationary noise with arbitrary covariance function
behaves like a white noise with spectrum density . This
fact further emphasizes the interest in studying more precisely
the dual-tree wavelet decomposition of a white noise. Note
also that, by calculating higher order cumulants of the dual-tree
wavelet coefficients and using techniques as in [18], [40], it
could be proved that, for all and ,

is asymptotically normal as . Al-
though Proposition 7 has been stated for 1-D random processes,
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we finally point out that quite similar results are obtained in the
2-D case.

V. WAVELET FAMILIES EXAMPLES

For a white noise (see (14) and (15), (30) and (31)) or for ar-
bitrary wide-sense-stationary noises analyzed at coarse resolu-
tion (cf. Proposition 7), we have seen that the cross-correlation
functions between the primal and dual wavelets taken at integer
values are the main features. In order to better evaluate the im-
pact of the wavelet choice, we will now specify the expressions
of these cross-correlations for different wavelet families.

A. -Band Shannon Wavelets

-band Shannon wavelets (also called sinc wavelets in the
literature) correspond to an ideally selective analysis in the fre-
quency domain. These wavelets also appear as a limit case for
many wavelet families, e.g., Daubechies or spline wavelets. We
have then, for all

where denotes the characteristic function of the set

if
otherwise.

In this case, (20) reads: for all

if

otherwise.

For , (19) leads to

if
otherwise.

We deduce from the two previous expressions that, for all

(44)

and, for all

if
otherwise.

(45)

We can remark that, for all

(46)

and , when is odd. Besides, the correlation
sequences decay pretty slowly as . We also note that, as
the functions , , have nonoverlapping spectra,
(6)–(8) (resp., (21)–(23)) allow us to conclude that, dual-tree
noise wavelet coefficients corresponding, respectively, to sub-
bands and with (resp.,
and with or ) are perfectly
uncorrelated.

B. Meyer Wavelets

These wavelets [41], [42, p. 116] are also band-limited but
with smoother transitions than Shannon wavelets. The scaling
function is consequently defined as

if

if

otherwise
(47)

where and

with such that

(48)

Then, it can be noticed that

(49)

A common choice for the function is [42, p. 119]:

(50)

For , the associated -band wavelets are
given by (51) shown at the bottom of the page, while, for the last
wavelet, we have (52) shown at the top of the following page.
Here, the phase functions , are odd functions, and
we have

In addition, for the orthonormality condition to be satisfied, the
following recursive equations must hold:

if

if

if

otherwise

(51)



4686 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 12, DECEMBER 2007

if

if

if

otherwise.

(52)

by setting: , . Generally, linear phase solu-
tions to the previous equation are chosen [43].

Using the preceding expressions, the cross-correlations be-
tween the Meyer basis functions and their dual counterparts are
derived in Appendix VIII. It can be deduced from these results
that:

(53)

where

(54)

For the wavelets, when (resp., ),
we get (55) (resp., (56)) at the bottom of the page. Similarly to
Shannon wavelets, for , (46) holds
and , when and is odd. As expected, we
observe that the previous cross-correlations converge pointwise
to the expressions given for Shannon wavelets in (44) and (45),
as we let .

Besides, let us make the following assumption: is
times continuously differentiable on with and, for
all , . This assumption is
typically satisfied by the window defined by (50) with .
From (49), it can be further noticed that, for all

, . Then, when , it is readily checked
by integrating by parts that

This shows that, as

(57)
For example, for the taper function defined by (50), we get

Combining (57) with (53), (55), and (56) allows us to see that the
cross-correlation sequences decay as when .
Equation (57) also indicates that the decay tends to be faster
when is large, which is consistent with intuition since the basis
functions are then better localized in time. Note that, as shown
by (51) and (52), under the considered differentiability assump-
tions, is times continuously differentiable on
whereas for and . Propo-
sition 4 then guarantees a decay rate at least equal to
(here, ). In this case, we see that the decay rate
derived from (57) is more accurate than the decay given by
Proposition 4.

C. Wavelet Families Derived From Wavelet Packets

1) General Form: One can generate -band orthonormal
wavelet bases from dyadic orthonormal wavelet packet decom-
positions corresponding to an equal subband analysis. We are
consequently limited to scaling factors which are power of .
More precisely, let be the considered wavelet packets
[44], for all an orthonormal -band wavelet decom-
position is obtained using the basis functions with

. In this case, the basis functions satisfy the following
two-scale relations: for all

(58)

(59)

where and are the frequency responses of the low-pass
and high-pass filters of the associated two-band para-unitary
synthesis filter bank. We can infer the following result.

if
otherwise

(55)

if

otherwise.
(56)
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Proposition 8: For all and , we have

(60)

(61)

where, for all , is the autocorrelation
of the impulse response of the filter with frequency
response :

Proof: See Appendix IX.

It is important to note that (60) and (61) are not valid for
. These two relations define recursive equations for the

calculation of the cross-correlations , provided
that has been calculated first.

For this specific class of -band wavelet decompositions, it
is possible to relate the decay properties of the cross-correlation
functions to the number of vanishing moments of the underlying
dyadic wavelet analysis.

Proposition 9: Assume that the filters with frequency re-
sponse and are finite impulse response (FIR) and has
a zero of order at frequency (or, equivalently, has
a zero of order at frequency ). Then, there exists
such that

(62)

In addition, for all , let ,
, be the digits in the binary representation of , that is,

(63)

Then, there exists such that

(64)

Proof: The filters of the underlying dyadic multiresolution
being FIR, the wavelet packets are compactly supported. Con-
sequently, their Fourier transforms are infinitely differentiable,
their derivatives of any order belonging to . In addition,
the binary representation of being given by (63), (58)
and (59) yield

that is

Moreover, by assumption as , whereas
and . This shows that, when ,

as . From (33), we deduce
the upper bound in (64). Furthermore, by applying Proposition
4 when , we have then and (62) is
obtained.

We see that the cross-correlation decays all the more
rapidly as the number of ’s in the binary representation of
is large.2

2) The Particular Case of Walsh–Hadamard Transform: The
case corresponds to Haar wavelets. In contrast with
Shannon wavelets, these wavelets lay emphasis on time/spatial
localization. We consequently have:

(65)

(66)

where

if
otherwise.

(67)

After some calculations which are provided in Appendix X, we
obtain for all

(68)

where, for all and for all

Furthermore, we have (adopting the convention: )

(69)

For with , the cross-correlations ,
, can be determined in a recursive manner thanks

to Proposition 8. For Walsh–Hadamard wavelets, we have

if
if
otherwise

(70)

2The characterization of the sum of digits of integers remains an open problem
in number theory [45], [46].
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TABLE I
ASYMPTOTIC FORM OF 
 (�) AS j� j ! 1 FOR WALSH–HADAMARD WAVELETS

and, consequently, for all and

(71)

(72)

From (69), it can be noticed that
when , which corresponds to a faster asymptotic

decay than with Shannon wavelets. The asymptotic behavior of
, , can also be deduced from (69), (71), and

(72). The expressions given in Table I are in perfect agreement
with the decay rates predicted by Proposition 9.

D. Franklin Wavelets

Franklin wavelets [47], [48] correspond to a dyadic or-
thonormal basis of spline wavelets of order [42, p. 146
sq.]. With the Haar wavelet, they form a special case of
Battle–Lemarié wavelets [49], [50]. The Fourier transforms of
the scaling function and the mother wavelet are given by

(73)

(74)

The expression of the cross-correlation of the scaling functions
readily follows from (20)

where, for all and

The expression of the cross-correlation of the mother wavelet
can be deduced from (19) and (74) and resorting to numerical
methods for the computation of the resulting integral, but it is
also possible to obtain a series expansion of the cross-correla-
tion as shown next.

Taking the square modulus of (74), we find

(75)

where

Let (resp., ) be the sequence (resp., function)
whose Fourier transform is (resp., ). Similarly to (61), (75)
leads to the following relation:

(76)

where denotes the autocorrelation of the sequence
.

We have then to determine and . First, it
can be shown (see Appendix XI for more detail) that

(77)

where

Second, the sequence can be deduced from
by using -transform inversion techniques (calcula-

tions are provided in Appendix XI). This leads to (78), shown
at the bottom of the page. Equations (76), (77), and (78) thus
allow an accurate numerical evaluation of . Since

as (79)

and

as (80)

the convergence of the series in (76) is indeed pretty fast.
From Proposition 4, we further deduce that and

decay as (here, we have ). The

(78)
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TABLE II
THEORETICAL CROSS-CORRELATION VALUES IN THE DYADIC CASE (d = 0)

TABLE III
THEORETICAL VALUES FOR THE FIRST TWO CROSS-CORRELATION SEQUENCES IN THE M -BAND MEYER CASE (d = 0)

decay rate of can be derived more precisely from (76).
Indeed, we have

(81)

where the convexity of has been used in the first inequality
and the last inequality is a consequence of (79) and (80). It can
be deduced from the dominated convergence theorem that

Finally, we would like to note that similar expressions can be
derived for higher order spline wavelets although the calcula-
tions become tedious.

VI. EXPERIMENTAL RESULTS

A. Results Based on Theoretical Expressions

At first, we provide numerical evaluations of the expressions
of the cross-correlation sequences obtained in the previous sec-
tion when the lag variable (denoted by ) varies in .
The cross-correlations for lag values in can be
deduced from the symmetry properties shown in Section III-A.
We notice that cubic spline wavelets [51] have not been studied
in Section V, so that their cross-correlation values have to be
computed directly from (19) and (20). The results concerning
the dyadic case are given in Table II. They show that the cross-

TABLE IV
THEORETICAL VALUES FOR THE LAST CROSS-CORRELATION

SEQUENCE IN THE M -BAND MEYER CASE (d = 0)

TABLE V
THEORETICAL CROSS-CORRELATION VALUES IN THE

WALSH–HADAMARD CASE

correlations between the noise coefficients at the output of a
dual-tree analysis can take significant values (up to ). We
also observe that the wavelet choice has a clear influence on the
magnitude of the correlations. Indeed, while the Meyer wavelet
leads to results close to the Shannon wavelet, the correlations
are weaker for the Haar wavelet. As expected, spline wavelets
yield intermediate cross-correlation values between the Meyer
and the Haar cases.

Our next results concern the -band case with . Due
to the properties of the cross-correlations, the study can be sim-
plified as explained below.

• Shannon wavelets: due to (46), the -band cross-correla-
tions are, up to a possible sign change, equal to the dyadic
case cross-correlations (see Table II).

• Meyer wavelets: still due to (46), the first cross-
correlations of the wavelets are easily deduced from the
first one. So, we only need to specify , ,
and . Tables III and IV give the related values
when ranges from to , the parameter being set to
its possible maximum value .
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TABLE VI
CROSS-CORRELATION ESTIMATES IN THE DYADIC CASE (d = 0)

TABLE VII
CROSS-CORRELATION ESTIMATES IN THE M -BAND CASE (d = 0)

• Walsh-Hadamard wavelets: when , ,
, is the set of basis functions of the -band

wavelet decomposition. In this way, the results in Table V
allow us to evaluate the cross-correlation values for

.
As shown in Tables III and IV, the cross-correlations in the

Meyer case remain significant, their magnitudes being even
slightly increased as the number of subbands becomes larger.
Table V shows that the cross-correlation of Walsh–Hadamard
wavelets are much smaller and that they are close to zero when
the subband index is large.

B. Monte Carlo Simulations

A second approach for computing the cross-correlations con-
sists in carrying out a Monte Carlo study. More precisely, a re-
alization of a white standard Gaussian noise sequence of length

(with ) is drawn and its 1-D dual-tree
decomposition over resolution levels is performed. Then, the
cross-covariances for each subband can be estimated by their
classical sample estimates. In our experiments, average values
of these cross-correlations are computed over 100 runs.

This Monte Carlo study allows us to validate the theoretical
expressions we have obtained for several wavelet families in



CHAUX et al.: NOISE COVARIANCE PROPERTIES IN DUAL-TREE WAVELET DECOMPOSITIONS 4691

TABLE VIII
ESTIMATION OF THE LAST CROSS-CORRELATION SEQUENCE FORM -BAND SHANNON AND MEYER WAVELETS

Section V. In addition, this approach can be applied to wavelets
whose Fourier transforms do not take a simple form. For in-
stance, we are able to compute the cross-correlation values for
symlets [42, p. 259] associated to filters of length as well as
for four-band compactly supported wavelets (here designated as
AC) associated to 16-tap filters [52].

Table VI shows the estimations of the cross-correlations ob-
tained in the dyadic case, while the results in the -band case
with are listed in Tables VII and VIII. By comparing
these results with the ones in Tables V, III, and IV, a good
agreement is observed between the theoretical values and the
estimated ones for Shannon, Meyer, and cubic spline wavelets.
For less regular wavelets such as Franklin or Haar wavelets, the
agreement remains quite good at coarse resolution but,
at fine resolution , it appears that the correlations are
stronger in practice than predicted by the theory. The fact that
we use a discrete decomposition instead of the classical analog
wavelet framework may account for these differences. Indeed,
we use the implementation of the -band dual-tree decompo-
sition described in [32], which requires some digital prefilters.
The selectivity of these filters is inherited from the frequency
selectivity of the scaling function. As a side effect, the noise is
colored by these prefilters.

Some comments can also be made concerning symlets 8 and
four-band AC wavelets. We see that the symlets behave very
similarly to Franklin wavelets whereas AC wavelets provide in-
termediate correlation magnitudes between the -band Meyer
and Hadamard cases.

C. Inter-Band Cross-Correlations

Although the cross-correlations between primal/dual basis
functions corresponding to different subbands have not been
much investigated in the previous sections, we provide in this
part some numerical evaluations for them.

More precisely, we are interested in studying
with , which represents the

inter-band cross-correlations. We are able to compute them
thanks to (16) and (17). Numerical results are given in Table IX.

Some symmetry properties can be observed, which can be
deduced from (16), (17), and the specific form of the considered
wavelet functions. Most interestingly, it can be noticed that the
inter-band cross-correlations often have a significantly smaller
amplitude than the corresponding intra-band cross-correlations.
As expected, the more frequency selective the decomposition
filters, the more negligible the values of the inter-band cross-
correlations.

D. Two-Dimensional Experiment

We aim here at comparing the obtained theoretical ex-
pressions of the 2-D cross-covariances with Monte Carlo
evaluations of these second-order statistics. We consider a
2-D three-band Meyer dual-tree wavelet decomposition of a
white standard Gaussian field of size . The Monte
Carlo study is carried out over 10 000 realizations. The de-
composition is performed over resolution levels and the
results are provided at the coarsest resolution. The covariance
fields are depicted in Fig. 2 as well as the ones derived from
(31), (53)–(56). For more readibility, a dashed separation line
between the subbands has been added (for a three-band decom-
position, nine covariance fields have to be

computed when ). We compute these fields for
, thus resulting in 16 covariance values for each

subband. Succinctly, each small gray-scaled square represents
the intensity of the cross-covariance in a given subband at
spatial position . Comparing theoretical results with numerical
ones (left and right sides of Fig. 2, respectively), it can be
noticed that they are quite similar. In addition, we observe that,
due to the separability of the covariance fields and (13), for all
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TABLE IX
INTER-BAND CROSS-CORRELATION VALUES FOR SOME WAVELET FAMILIES. WE RECALL THAT PROPERTY (12) HOLDS AND THAT,

FORM -BAND MEYER WAVELETS 
 IS ZERO WHEN jm �m j > 1

Fig. 2. 2-D cross-correlations using three-band Meyer wavelets. Theoretical results (left); experimental results (right).

and , vanishes
when either ( and ) or ( and ).

VII. CONCLUSION

In this paper, we have investigated the covariance properties
of the -band dual-tree wavelet coefficients of wide-sense-sta-
tionary 1- and 2-D random processes. We have stated a number
of results helping to better understand the structure of the cor-
relations introduced by this frame decomposition. These results
may be useful in the design of efficient denoising rules using
dual-tree wavelet decompositions, when the noise is additive
and stationary. In particular, if a pointwise estimator is applied
to the pair of primal/dual coefficients at the same location and
in the same subband, we have seen that the related components
of the noise are uncorrelated. On the contrary, if a block-based
estimator is used to take advantage of some spatial neighbor-
hood of the primal and dual coefficients around some given po-
sition in a subband, noise correlations generally must be taken
into account. Recently, this fact has been exploited in the design
of an efficient image denoising method using Stein’s principle,

yielding state-of-the-art performance for multichannel image
denoising [38], [53].

In future work, it would be interesting to extend our analysis
to other classes of random processes. In particular, a similar
study could be undertaken for self-similar processes [54], [55]
and processes with stationary increments [21], [56].

Finally, we would like to note that the expressions of the
cross-correlations between the primal and dual wavelets which
have been derived in this paper may be of interest for other prob-
lems. Indeed, let

denote the dual-tree decomposition where (resp., ) is the
primal (resp., dual) wavelet decomposition. The studied cross-
correlations then characterize the “off-diagonal” terms of the
operator



CHAUX et al.: NOISE COVARIANCE PROPERTIES IN DUAL-TREE WAVELET DECOMPOSITIONS 4693

where denotes the adjoint of a bounded linear operator .
The operator is encountered in the solution of some inverse
problems.

APPENDIX I
PROOF OF PROPOSITION 1

The -band wavelet coefficients of the noise are given by

For all and , we have then

After the variable change , using the definition of the
autocovariance of the noise in (5), we find that

which readily yields

Note that, in the above derivations, permutations of the integral
symbols/expectation have been performed. For these operations
to be valid, some technical conditions are required. For example,
Fubini’s theorem [57, p. 164] can be invoked provided that

where is the autocovariance of .
Relations (7) and (8) follow from similar arguments.

APPENDIX II
PROOF OF PROPOSITION 2

For all ,

(82)

Since the Fourier transform defines an isometry on , it
can be deduced from (82) that is in and its

Fourier transform is .3 According to

3As  (t� k); k 2 is an orthonormal family of L ( ), we have

 (!) � 1 and   2 L ( ).

(3) and (4), when or , the latter func-

tion is equal to , thus showing that
. The equality of the covariance sequences

defined by (6) and (7) straightforwardly follows.
When , the Fourier transform of is equal to

whose conjuguate is the Fourier
transform of . This proves (11), which combined with
(8) leads to

After a variable change and using the fact that is an even
function, we obtain (12).

Consider now the Fourier transform
of . For all , there exists such that

and, from (4), we get

For symmetry reasons, the equality between the first and last
terms extends to all . Coming back to the time domain,
we find

This shows the symmetry of w.r.t. . Equation
(8) then yields, for all

APPENDIX III
WHITE NOISE CASE

Recall that a white noise is not a process with finite variance,
but a generalized random process [58], [59]. As such, some cau-
tion must be taken in the application of (6)–(8). More precisely,
if is a white noise, its autocovariance can be viewed as the
limit as tends to of

Formula (8) can then be used, yielding for all
and
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Since and are in , is a bounded contin-
uous function. By applying Lebesgue dominated convergence
theorem, we deduce that

which leads to (15). Equations (14) are similarly obtained
by further noticing that, due to the orthonormality property

.

APPENDIX IV
PROOF OF PROPOSITION 3

From (25) and (26), defining the unitary transform applied to
the detail noise coefficients and

Using (24) and the evenness of , one can easily de-
duce (27). Concerning(28), we proceed in the same way, taking
into account the relation:

Finally, noting that

and, invoking the same arguments, we see that and
are uncorrelated random variables.

APPENDIX V
PROOF OF PROPOSITION 4

Since , we have

Furthermore, is times continuously differen-
tiable and for all , .
It can be deduced [60, pp. 158–159] that

which leads to

(83)

Let us now consider the cross-correlation functions
with . Similarly, we have

(84)

where . The function
is times continuously differentiable on , where its
derivative of order is

(85)

Due to the fact that as , we have
for all , . From (85),
we deduce that the function admits limits on the left
side and on the right side of , which are both equal to . This
allows to conclude that is times continuously
differentiable on , its first derivatives vanishing at

. Besides, is continuously differentiable on
and on ( may be discontinuous

at ). Using the same arguments as for , this allows us
to claim that, for all

(86)

We can note that as it is equal
to

Since , the previous limit is neces-
sarily zero. Using this fact and integrating by parts in (86), we
find that, for all
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Combining this expression with (86), we deduce that

(87)

Let us now study the case when . Equation (84) still
holds, but as shown by (4), takes a more complicated form

if
otherwise.

So, the function as well as its derivatives of any order now
exhibit discontinuities at where . However, from (1)
and the low-pass condition , we have, for all

as

As a consequence of the para-unitary condition (2), we get

and

which allows to deduce that

From (1), it can be concluded that

as (88)

The derivatives of order of over
are given by

(89)

where

if

otherwise.

We deduce that, for all

Furthermore, combining (88) with (89) allows us to show
that, for all , the derivative of order
of at , , is defined and equal to . Conse-
quently, is times continuously differentiable

on while is continuously differentiable on

. Similarly to the case , this leads
to

(90)

By integration by parts, we deduce that, for all

(91)

(92)

where (resp., ) denotes
the right-side (resp., left-side) derivative of order of
at . We conclude that

(93)

In summary, we have proved that (32) and (33) hold, the constant
being chosen equal to the maximum value of the left-hand

side terms in the inequalities (83), (87) and (93).

APPENDIX VI
PROOF OF PROPOSITION 5

Let . Since is a unit norm function of ,
the function is upper-bounded by . As further
satisfies (33), it can be deduced that

(94)

The same upper bound holds for .
For a white noise, the property then appears as a straightfor-

ward consequence of the latter inequality and (14) and (15).
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Let us next turn our attention to processes with exponentially
decaying covariance sequences. From (8), (34), and (94), we
deduce that, for all

(95)

As the left-hand side of (95) corresponds to an even function of
, without loss of generality, it can be assumed that . We

can decompose the above integral as

The first integral in the right-hand side can be upper-bounded as
follows:

Let be given. The second integral can be decomposed
as

Furthermore, we have

(96)

From the above inequalities, we obtain

As , it readily follows that
there exists such that (36) holds.

The right-hand side of (95) being also an upper bound for
, , (35) is proved at the same time.

APPENDIX VII
PROOF OF PROPOSITION 7

Let us prove (43), the proof of (42) being quite similar. We
first note that and therefore belong to
(see footnote 3). Applying Parseval’s equality to (8), we obtain
for all

As , the spectrum density is a bounded contin-
uous function. According to Lebesgue dominated convergence
theorem

APPENDIX VIII
CROSS-CORRELATIONS FOR MEYER WAVELETS

Substituting (47) in (20), we obtain, for all
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(97)

where the function is defined by (67). Using (49), we get

(98)

This allows us to rewrite (97) as

(99)

After simplification, (53) follows.
According to (19) and (51), we have for all
and

By proceeding similarly to (97)–(98), we find

When is an integer, this expression further simplifies in (55).
Finally, when , we have, for all

This yields (56).

APPENDIX IX
PROOF OF PROPOSITION 8

Let . Given (19), (58) leads to

(100)

Furthermore, we have

Combining this equation with (100) and using classical trigono-
metric equalities, we obtain

which, again invoking (19), yields (60). Equation (61) can be
proved similarly starting from (59).

APPENDIX X
CROSS-CORRELATIONS FOR HAAR WAVELET

Knowing the expression of the Fourier transform of the Haar
scaling function in (65) and using the cross-correlation formula
(20), we obtain
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(101)

By integration by parts, we find: for all

Combining this result with (101) leads to (68).
On the other hand, according to (66) and (19), we have

In [61, p.459] an expression of

with is given. Using this relation yields (69)
when . The general expression for follows from the
oddness of .

APPENDIX XI
CROSS-CORRELATION FOR THE FRANKLIN WAVELET

We have, for all

After two successive integrations by parts, we obtain

(102)

Standard trigonometric manipulations allow us to write:

Inserting these expressions in (102) yields

(103)

where (see [61, p. 459])

and

Simple algebra allows us to prove that (103) is equivalent to
(77).

On the other hand, can be viewed as the frequency
response of a noncausal stable digital filter whose transfer func-
tion is
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We next expand in Laurent series on the holomorphy
domain containing the unit circle, that is,

We thus deduce from the partial fraction decomposition of
that

By identifying the latter expression with ,
(78) is obtained.
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