EFFICIENT EXTRAPOLATION FOR PARALLEL CO-SIMULATION OF COUPLED SYSTEMS

(CHOPtrey)

Abir Ben Khaled - El Feki, Laurent Duval, Mongi Ben Gaid

OUTLINE

Background on co-simulation: context & challenges

- Results from previous work
- Ensuring co-simulation accuracy with CHOPtrey extrapolation approach
- Conclusion and perspectives

BACKGROUND

- Co-simulation: Alternative to monolithic simulation
 Simulation of a complex system using several coupled subsystems
 - A subsystem is modeled using the most appropriate tool instead of using a single modeling software
 - Subsystems are modeled and run in a segregated manner → The equations of each model are integrated using a solver separately
 - During the execution models exchange data → A synchronization mechanism is used between the models, in such a way that models update their inputs and outputs according to assigned communication steps
 - Easy upgrade, reuse, and exchange of models

BACKGROUND

- Co-simulation: Alternative to monolithic simulation
 Simulation of a complex system using several coupled subsystems
 - A subsystem is modeled using the most appropriate tool instead of using a single modeling software
 - Subsystems are modeled and run in a segregated manner → The equations of each model are integrated using a solver separately
 - During the execution models exchange data → A synchronization mechanism is used between the models, in such a way that models update their inputs and outputs according to assigned communication steps
 - Easy upgrade, reuse, and exchange of models
 - Heterogeneous ODE models → Time consuming simulations

Model 1

Model 2

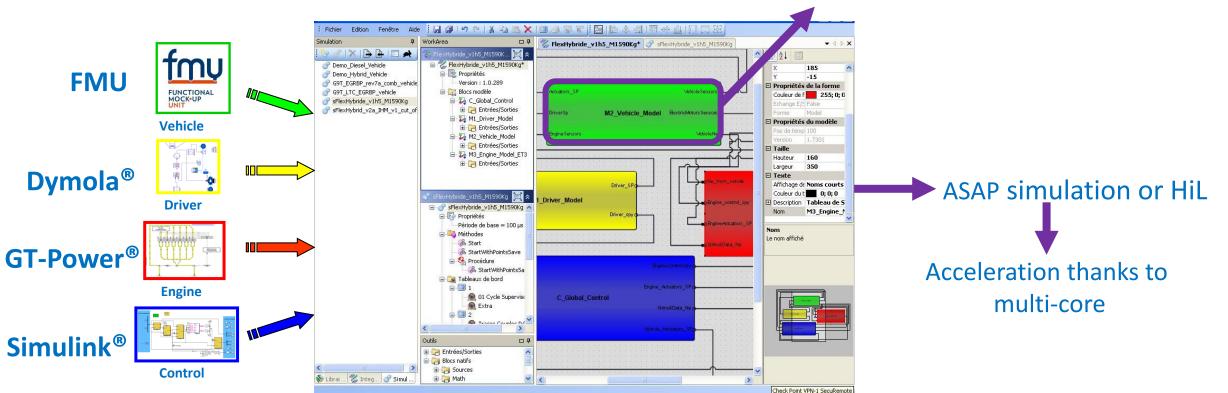
Model 3

BACKGROUND (CONT'D)

• A multi-core co-simulation kernel: Why?

- System-level simulation leads to put together models which are classically disconnected, increasing the CPU demand at simulation time
- Simulation time becomes an important metric for model complexity
- Most 0D/1D simulation tools have mono-core kernel and doesn't exploit available parallelism provided by multi-core computers

How long will this CPU power remain unused ?



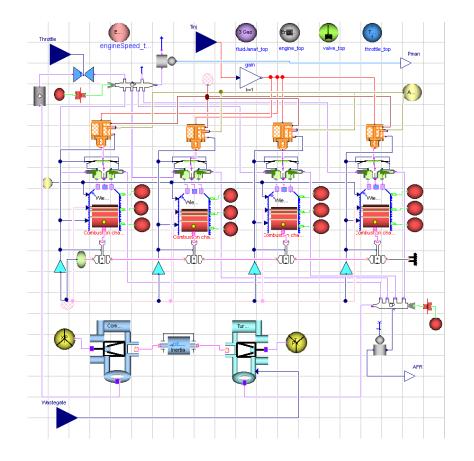
BACKGROUND (CONT'D)

xMOD[™] IFPEN co-simulation software

OUTLINE

Background on co-simulation: context & challenges

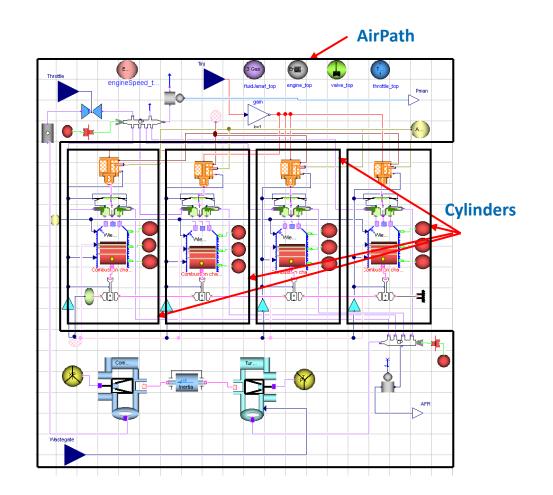
Results from previous work


- Ensuring co-simulation accuracy with CHOPtrey extrapolation approach
- Conclusion and perspectives

RESULTS FROM PREVIOUS WORK

• Case study: Engine simulator

- Spark Ignition engine (Renault)
 - 4 cylinders + Airpath
 - 118 state variables
 - 312 event indicators
- Modeling & simulation tools
 - Dymola (ModEngine library)
 - xMOD (FMUs)
- Solver
 - LSODAR: Root-finding / Stiffness detection



RESULTS FROM PREVIOUS WORK

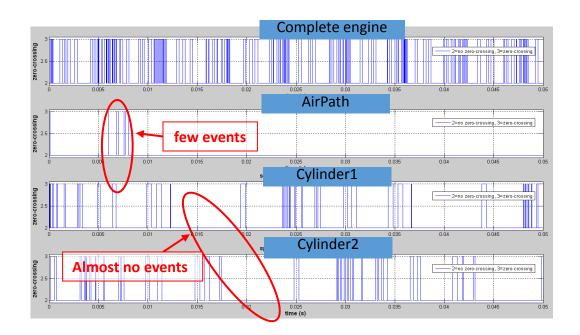
• Case study: Engine simulator

- Spark Ignition engine (Renault)
 - 4 cylinders + Airpath
 - 118 state variables
 - 312 event indicators
- Modeling & simulation tools
 - Dymola (ModEngine library)
 - xMOD (FMUs)
- Solver
 - LSODAR: Root-finding / Stiffness detection
- Multi-core simulation
 - 5 components on 5 cores

RESULTS FROM PREVIOUS WORK

• Case study: Engine simulator

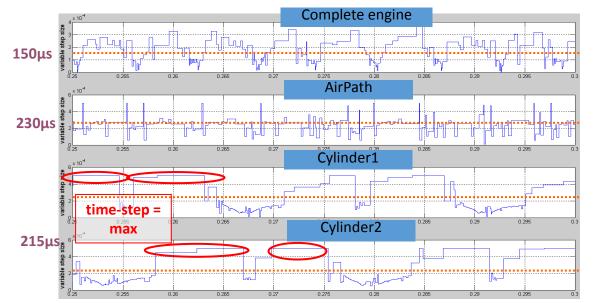
- Spark Ignition engine (Renault)
 - 4 cylinders + Airpath
 - 118 state variables
 - 312 event indicators
- Modeling & simulation tools
 - Dymola (ModEngine library)
 - xMOD (FMUs)
- Solver
 - LSODAR: Root-finding / Stiffness detection
- Multi-core simulation
 - 5 components on 5 cores


Splitting is speed-up

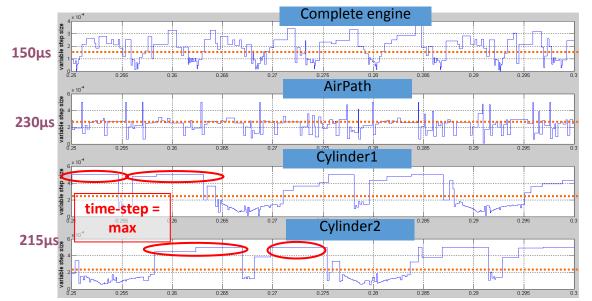
- Events are related usually to the evolution of a subset of the state vector
- Discontinuities are independent from a physical point of view



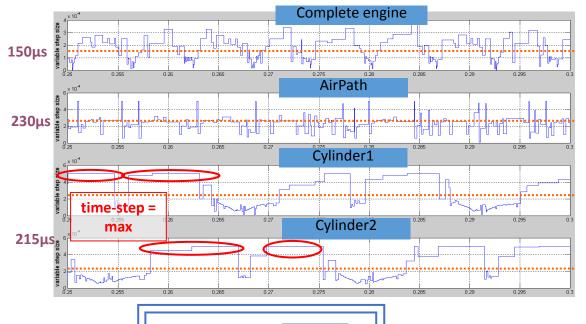
• Number of events is reduced locally

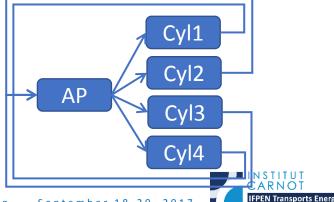


- Number of events is reduced locally
- Integration step can reach maximum allowed value (500µs)

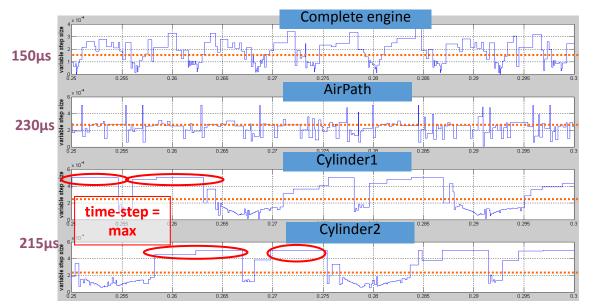


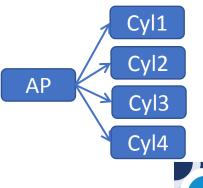
- Number of events is reduced locally
- Integration step can reach maximum allowed value (500µs)
 - → Mean value increased from **150µs** to **230µs**



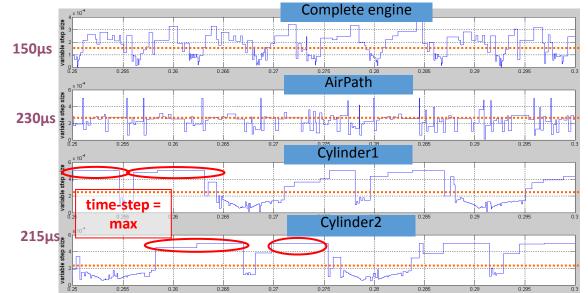

- Number of events is reduced locally
- Integration step can reach maximum allowed value (500µs)
 - → Mean value increased from 150µs to 230µs
- Result on speed-up
 - Mono-core simulation
 - 5 threads on 1 core
 - Speed-up ≈ 2
 - Thanks to System splitting & Solver coupling
 - Despite multi threading cost

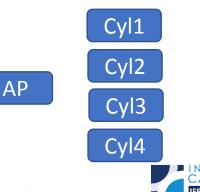
- Number of events is reduced locally
- Integration step can reach maximum allowed value (500µs)
 - → Mean value increased from 150µs to 230µs
- Result on speed-up
 - Mono-core simulation
 - 5 threads on 1 core
 - Speed-up ≈ 2
 - Thanks to System splitting & Solver coupling
 - Despite multi threading cost
 - Multi-core simulation
 - 5 threads on 5 cores





IUTAM Symposium on Co-Simulation and Solver-Coupling – September 18-20, 2017 🔳

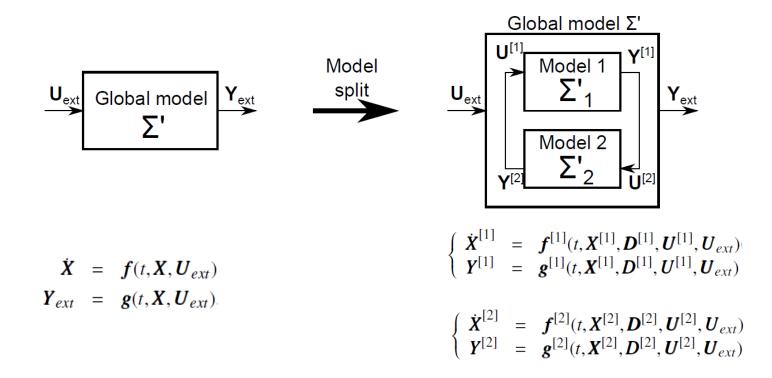

- Number of events is reduced locally
- Integration step can reach maximum allowed value (500µs)
 - → Mean value increased from 150µs to 230µs
- Result on speed-up
 - Mono-core simulation
 - 5 threads on 1 core
 - Speed-up ≈ 2
 - Thanks to System splitting & Solver coupling
 - Despite multi threading cost
 - Multi-core simulation
 - 5 threads on 5 cores
 - Speed-up ≈ 8 (AP then 4Cyls in //)



N Transports Energy

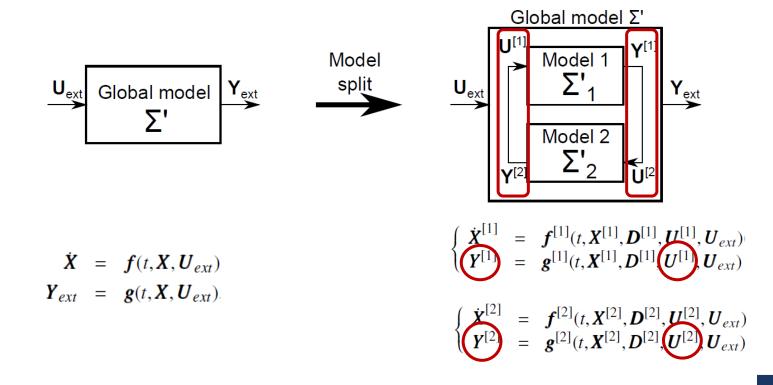
- Number of events is reduced locally
- Integration step can reach maximum allowed value (500µs)
 - → Mean value increased from 150µs to 230µs
- Result on speed-up
 - Mono-core simulation
 - 5 threads on 1 core
 - Speed-up ≈ 2
 - Thanks to System splitting & Solver coupling
 - Despite multi threading cost
 - Multi-core simulation
 - 5 threads on 5 cores
 - Speed-up ≈ 8 (AP then 4Cyls in //)
 - Speed-up ≈ 9 (both AP and 4Cyls in //)

N Transports Energ


IUTAM Symposium on Co-Simulation and Solver-Coupling - September 18-20, 2017

ARNO

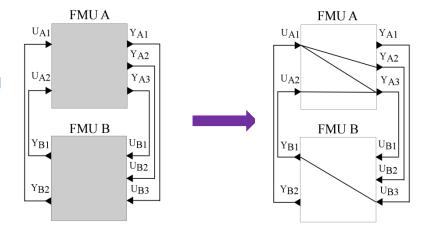
PEN Transports Energ

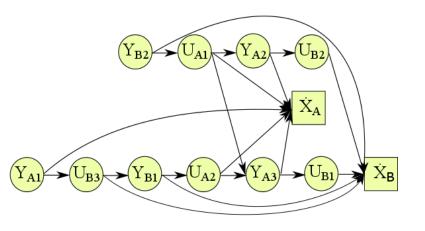

RESULTS FROM PREVIOUS WORK IMPROVING PARALLELISM WITH THE RCOSIM APPROACH

• System splitting brings virtual algebraic loops

RESULTS FROM PREVIOUS WORK IMPROVING PARALLELISM WITH THE RCOSIM APPROACH

- System splitting brings virtual algebraic loops
- →Involve delayed outputs, even with an efficient execution order
- ➔ Problem with accuracy

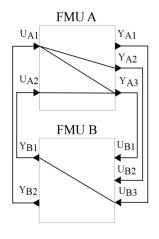

RESULTS FROM PREVIOUS WORK RCOSIM: REFINED CO-SIMULATION


Before FMI

- Only dependencies between models are specified by the user
- Models are black boxes \rightarrow can't identify locally if Y is dependent on U

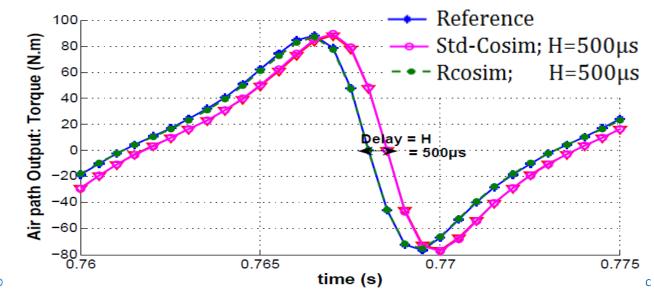
• With FMI

- Relationships between each Y and U is known
- Each Y and U is computed with a different FMU function
- → Build refined dependency graph
 - Vertices: IN, OUT and STATE operations
 - Directed edges: precedencies between operations
 - Target: Ordinary Differential Equations (ODEs)
 - No algebraic loops \rightarrow Directed Acyclic Graph
- Apply a multi-core scheduling heuristic on the dataflow graph

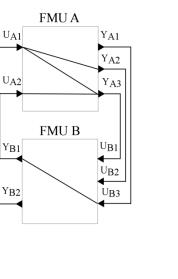


RESULTS FROM PREVIOUS WORK IMPROVING PARALLELISM WITH THE RCOSIM APPROACH

- Torque is a direct feedthrough output: e.g. Y_{A3}
- Expected delays with Standard Co-simulation (Std-Cosim) due to arbitrary order execution decision between models



IFPEN Transports Energy

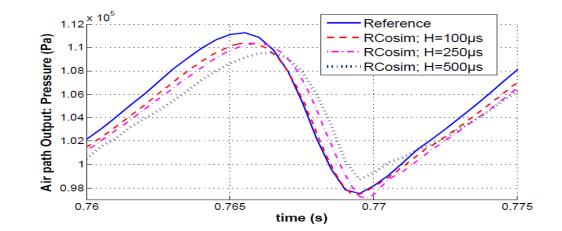

RESULTS FROM PREVIOUS WORK IMPROVING PARALLELISM WITH THE RCOSIM APPROACH

- Torque is a direct feedthrough output: e.g. Y_{A3}
- Expected delays with Standard Co-simulation (Std-Cosim) due to arbitrary order execution decision between models
- Elimination of delays with RCosim
 - The execution order is compliant with initial model
- Speed-up ≈ **10**
 - No more delays \rightarrow Correct data \rightarrow Less iteration of the solver

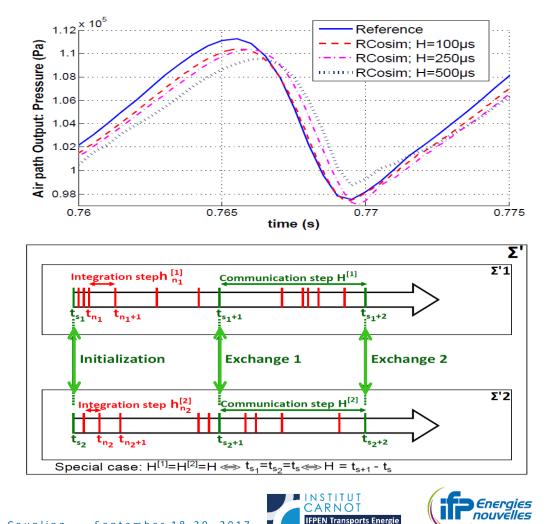
Simulation method	Std-Cosim		RCosim
Er(%) with H=100µs		2.95	0.68
Er(%) with H=250µs +5	72%	9.12	1.1
Er(%) with H=500µs	19.83		1.37

N Transports Ener

upling – September 18-20, 2017


OUTLINE

- Background on co-simulation: context & challenges
- Results from previous work
- Ensuring co-simulation accuracy with CHOPtrey extrapolation approach
- Conclusion and perspectives


CHOPtrey EXTRAPOLATION APPROACH IMPROVE AGAIN THE SIMULATION ACCURACY

- <u>Limitation</u>: with RCosim, errors are reduced but still exist
- <u>Reason</u>: Input data is held constant during the communication step
- <u>Dilemma</u>: **/** ∕ communication step
 - ↗↗ Speed-up
 - Integration error

CHOPtrey EXTRAPOLATION APPROACH IMPROVE AGAIN THE SIMULATION ACCURACY

- <u>Limitation</u>: with RCosim, errors are reduced but still exist
- <u>Reason</u>: Input data is held constant during the communication step
- <u>Dilemma</u>: **/** ∕ communication step
 - ↗↗ Speed-up
 - **//** Integration error
- Idea: Extrapolate input signals to
 - Enlarge intervals
 - Reduce simulation errors

RELATED WORK ON PREDICTION

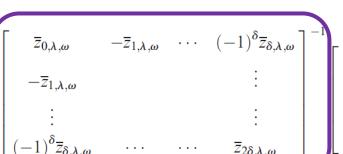
Difficulties

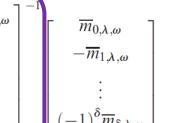
- Related work on extrapolations treated mostly the continuous case
 - Successful for non-stiff systems
 - ullet Encountered problems with stiff systems earrow polynomial prediction may fail
- Complex systems with hybrid behavior is even more difficult to predict
 - Nonlinearities, discontinuities,...
- →No universal prediction scheme, efficient with every signal
- Challenges: fast, causal and reliable prediction
 - Predictor computing cost << extra model computations with small communication steps
 - Accurate predictions for any signal (blocky/smooth; slow/steep onsets)
- Idea: Borrow the concept of context-based approach from lossless image encoders
 - Predict a pixel value based on a pattern of causal neighboring pixels
 - Different contexts: flat, smooth, +45° or -45° edges, etc.

CHOPtrey EXTRAPOLATION APPROACH A FAST AND CAUSAL PREDICTION

- We propose a Computationally Hasty Online Prediction framework (CHOPred)
- It is based on Causal Hopping Oblivious Polynomials (CHOPoly)
- $P_{\delta,\lambda,\omega}$: least squares polynomial predictor
 - δ : prediction degree;
 - λ : prediction frame length;
 - ω : weighting factor
- u: input signal; τ: relative time for prediction
- Weighted moment: $\overline{m}_{d,\lambda,\omega} = \sum_{l=0}^{\lambda-1} (\lambda l)^{\omega} l^d u_{-l}$
- Weighted sum of integer powers: $\overline{z}_{d,\lambda,\omega} = \sum_{l=0}^{\lambda-1} (\lambda l)^{\omega} l^d$
- General formula for extrapolation:

$$u(\tau) = \begin{bmatrix} 1 & \tau & \cdots & \tau^{\delta} \end{bmatrix} \begin{bmatrix} z_{0,\lambda,\omega} & -z_{1,\lambda,\omega} & \cdots & (-1)^{-} z_{\delta,\lambda,\omega} \\ -\overline{z}_{1,\lambda,\omega} & & \vdots \\ \vdots & & & \vdots \\ (-1)^{\delta} \overline{z}_{\delta,\lambda,\omega} & \cdots & \cdots & \overline{z}_{2\delta,\lambda,\omega} \end{bmatrix} \begin{bmatrix} \overline{m}_{0,\lambda,\omega} \\ -\overline{m}_{1,\lambda,\omega} \\ \vdots \\ (-1)^{\delta} \overline{m}_{\delta,\lambda,\omega} \end{bmatrix}$$


-1 -1

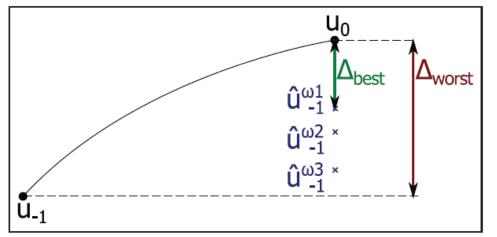

IUTAM Symposium on Co-Simulation and Solver-Coupling – September 18-20, 2017

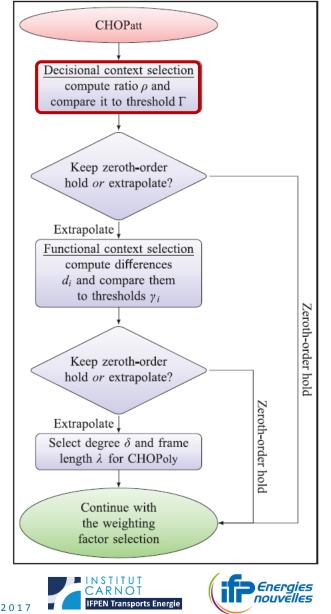
CHOPtrey EXTRAPOLATION APPROACH A FAST AND CAUSAL PREDICTION

- We propose a Computationally Hasty Online Prediction framework (CHOPred)
- It is based on Causal Hopping Oblivious Polynomials (CHOPoly)
- $P_{\delta,\lambda,\omega}$: least squares polynomial predictor
 - δ : prediction degree;
 - λ : prediction frame length;
 - ω : weighting factor
- u: input signal; τ: relative time for prediction
- Weighted moment: $\overline{m}_{d,\lambda,\omega} = \sum_{l=0}^{\lambda-1} (\lambda l)^{\omega} l^d u_{-l}$
- Weighted sum of integer powers: $\overline{z}_{d,\lambda,\omega} = \sum_{l=0}^{\lambda-1} (\lambda l)^{\omega} l^d$ Use of LUT \rightarrow Fast computation
- General formula for extrapolation:

$$u(\boldsymbol{\tau}) = \begin{bmatrix} 1 & \boldsymbol{\tau} & \cdots & \boldsymbol{\tau}^{\delta} \end{bmatrix}$$

CHOPtrey EXTRAPOLATION APPROACH A FAST AND CAUSAL PREDICTION

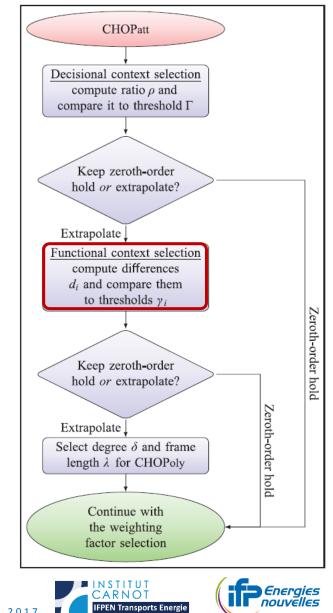

- We propose a Computationally Hasty Online Prediction framework (CHOPred)
- It is based on Causal Hopping Oblivious Polynomials (CHOPoly)
- $P_{\delta,\lambda,\omega}$: least squares polynomial predictor
 - δ : prediction degree;
 - λ : prediction frame length;
 - ω : weighting factor
- u: input signal; τ : relative time for prediction
- Weighted moment: $\overline{m}_{d,\lambda,\omega} = \sum_{l=0}^{\lambda-1} (\lambda l)^{\omega} l^{d} u_{-l}$ • Weighted sum of integer powers: $\overline{z}_{d,\lambda,\omega} = \sum_{l=0}^{\lambda-1} (\lambda - l)^{\omega} l^{d}$ • General formula for extrapolation: $u(\tau) = \begin{bmatrix} 1 & \tau & \cdots & \tau^{\delta} \end{bmatrix}$ $\begin{bmatrix} \overline{z}_{0,\lambda,\omega} & -\overline{z}_{1,\lambda,\omega} & \cdots & (-1)^{\delta} \overline{z}_{\delta,\lambda,\omega} \\ -\overline{z}_{1,\lambda,\omega} & \vdots \\ \vdots \\ (-1)^{\delta} \overline{z}_{\delta,\lambda,\omega} & \cdots & \cdots & \overline{z}_{2\delta,\lambda,\omega} \end{bmatrix}^{-1} \begin{bmatrix} \overline{m}_{0,\lambda,\omega} \\ -\overline{m}_{1,\lambda,\omega} \\ \vdots \\ (-1)^{\delta} \overline{m}_{\delta,\lambda,\omega} \end{bmatrix}$


CHOPtrey EXTRAPOLATION APPROACH A RELIABLE PREDICTION

- It uses a Contextual & Hierarchical Ontology of Patterns (CHOPatt)
 - To handle the discontinuities by selecting the appropriate $P_{\delta,\lambda,\omega}$
- STEP1: Decisional context selection
 - Worst case scenario without extrapolation: $\Delta_{\text{worst}} = |u_0 u_{-1}|$
 - Best prediction pattern: $\Delta_{\text{best}} = \min_{\omega \in \Omega} |u_0 \hat{u}_{-1}^{\omega}|; \quad \Omega = \{0, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2\}$ • Ratio: $\rho = \frac{\Delta_{\text{best}}}{\Delta_{\text{worst}}}$

• Threshold:
$$0.7 \leq \Gamma < 1$$
 e.g. $\Gamma = 90\%$

• If $\rho > \Gamma$ then sharp and fast variation \rightarrow Select "cliff" context

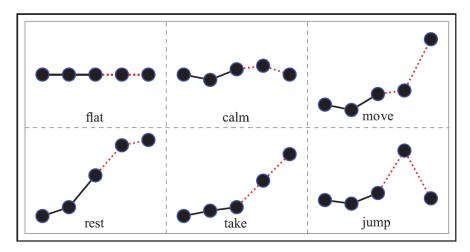

IUTAM Symposium on Co-Simulation and Solver-Coupling – September 18-20, 2017

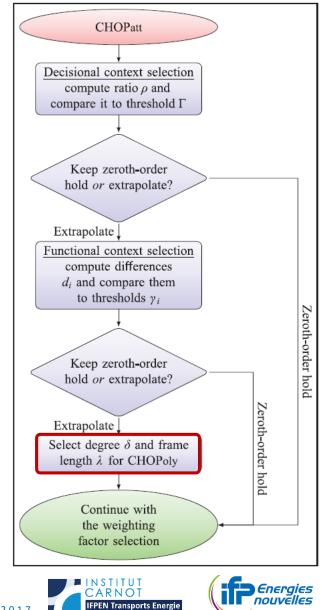
CHOPtrey EXTRAPOLATION APPROACH A RELIABLE PREDICTION

• STEP2: Functional context selection

• Differences (variations): $d_0 = u_0 - u_{-1}$ and $d_{-1} = u_{-1} - u_{-2}$ • Thresholds: $\gamma_0 = \gamma_{-1} = \frac{1}{2} \max_{i \in [1 - \Lambda, \dots, -3]} (|u_i - u_{i+1}|)$ • Conditions:

•
$$O$$
 if $|d_i| = 0;$
• C_i if $0 < |d_i| \le \gamma_i;$
• $\overline{C_i}$ if $|d_i| > \gamma_i.$


CHOPtrey EXTRAPOLATION APPROACH A RELIABLE PREDICTION

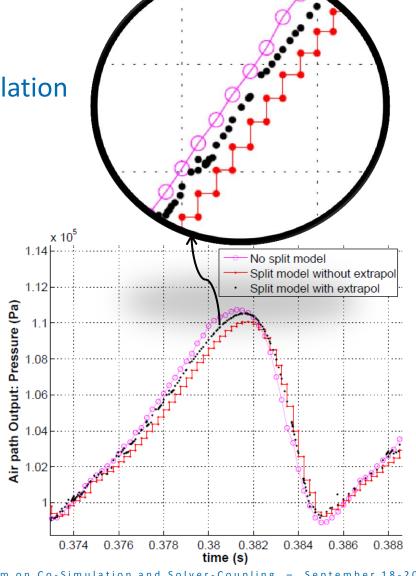

• STEP2: Functional context selection

• Differences (variations): $d_0 = u_0 - u_{-1}$ and $d_{-1} = u_{-1} - u_{-2}$ • Thresholds: $\gamma_0 = \gamma_{-1} = \frac{1}{2} \max_{i \in [1 - \Lambda, ..., -3]} (|u_i - u_{i+1}|)$ • Conditions: • O if $|d_i| = 0$:

•
$$C_i$$
 if $|d_i| > 0$,
• C_i if $0 < |d_i| \le \gamma_i$;
• $\overline{C_i}$ if $|d_i| > \gamma_i$.

n(ame)	#	<i>d</i> ₋₁	<i>d</i> ₀	<i>d</i> ₋₁ . <i>d</i> ₀	(δ, λ, ω)
f(lat)	0	0	0	0	(0, 1, .)
c(alm)	1	C_1	<i>C</i> ₂	any	(2, 5, .)
m(ove)	2	<i>C</i> ₁	\bar{C}_2	any	(0, 1, .)
r(est)	3	\bar{C}_1	C 2	any	(0, 2, .)
t(ake)	4	\bar{C}_1	\bar{C}_2	>0	(1, 3, .)
j(ump)	5	\bar{C}_1	\bar{C}_2	< 0	(0, 1, .)

SIMULATION RESULTS WITH CHOPtrey AUTOMATIC DETECTION OF SHARP VARIATION


• Conventional 1st & 2nd order extrapolation

- Fails on the engine model
- Major causes:
 - Discontinuities
 - Sharp variations
- → CHOPtrey?

SIMULATION RESULTS WITH CHOPtrey AUTOMATIC DETECTION OF SHARP VARIATION

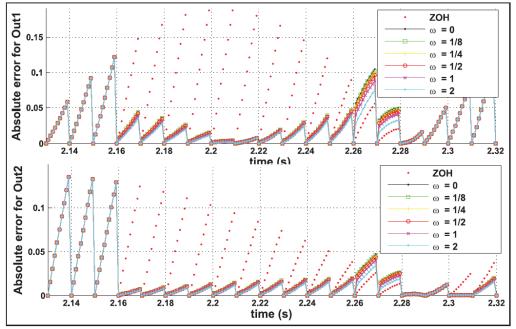
- Conventional 1st & 2nd order extrapolation
 - Fails on the engine model
 - Major causes:
 - Discontinuities
 - Sharp variations
- → CHOPtrey?



SIMULATION RESULTS WITH CHOPtrey AUTOMATIC DETECTION OF SHARP VARIATION

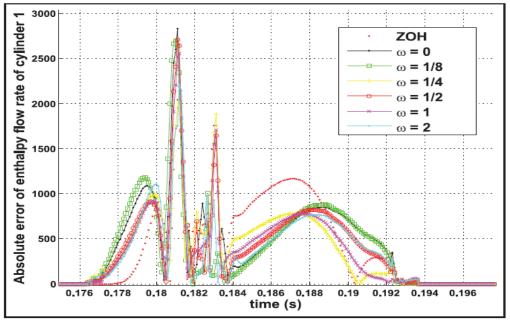
Conventional 1st & 2nd order extrapolation

- Fails on the engine model
- Major causes:
 - Discontinuities
 - Sharp variations


→ CHOPtrey?

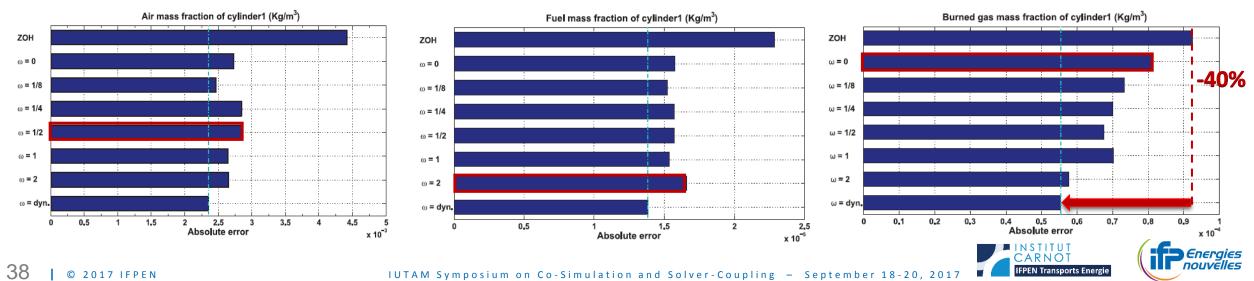
SIMULATION RESULTS WITH CHOPtrey AUTOMATIC SELECTION OF THE WEIGHTING FACTOR

• Simple model with no coupling


→ The higher the weighting factor, the smaller the error

SIMULATION RESULTS WITH CHOPtrey AUTOMATIC SELECTION OF THE WEIGHTING FACTOR

- Simple model with no coupling
 - → The higher the weighting factor, the smaller the error
- Complex coupled models, i.e. engine model
 - \rightarrow No unique best weighting factor ω



SIMULATION RESULTS WITH CHOPtrey AUTOMATIC SELECTION OF THE WEIGHTING FACTOR

- Simple model with no coupling
 - → The higher the weighting factor, the smaller the error
- Complex coupled models, i.e. engine model
 - \rightarrow No unique best weighting factor ω
- \rightarrow Dynamic selection of ω
 - At each communication step, ω_{best} is selected and used for the current step

→ Cumulative integration error is the lowest one

CHOPtrey PERFORMANCE SPEED-UP VERSUS ACCURACY

• The speed-up factor is still compared with single-threaded reference

- The model is split into 5 threads integrated in parallel on 5 cores
 - Containment of events detection handling → solvers accelerations → overcompensate multi-threading costs
- The relative error variation is compared with ZOH at 100 µs

Communication step	Prediction	Speed-up factor	Relative error variation (%)	
			Burned gas density	Fuel density
100 µs	ZOH	8.9 +12.5%	-	-
250 μs	ZOH	8.9 10.01 +12.5%	7	341
	CHOPtrey	10.07	-26	21

OUTLINE

- Background on co-simulation: context & challenges
- Results from previous work
- Ensuring co-simulation accuracy with CHOPtrey extrapolation approach
- Conclusion and perspectives

CONCLUSION

The use of large communication steps allows to accelerate the simulation at the cost of precision

Conventional extrapolation methods fails with hybrid dynamical systems

→ CHOPtrey extrapolation technique provides a solution for the trade-off between speed-up and accuracy, thanks to

The combination of a prediction and a multi-level context selection

Negligible computational overheads

 CHOPtrey combination with model splitting and parallel simulation on a hybrid dynamical engine model allows supra-linear speed-up (10 time faster with 5 cores) with acceptable result accuracy

PERSPECTIVES

 Decompose signals into morphological components such as polynomial trends, singularities and oscillations

- Allow to adapt detection thresholds
- → Improve context assignment
- Use of the knowledge of the plant model
 - Discard out-of-bound values as nonnegative variables
 - → Improve the discrimination of cliff behaviors
- Use of adaptive communication steps
 - Context-based and error-based closed-loop control
- Access on the input derivatives of the models
 - Provided by FMI for co-simulation
 - → Improve the extrapolation

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

@IFPENinnovation

IUTAM Symposium on Co-Simulation and Solver-Coupling - September 18-20, 2017